
Chapter 7 

Some aspects of the logical design of 
a control computer: a case study1 

511mmury Some logical aspects of a digital computer for a space vehicle 
;ire de3cribed. and the evolution of its logical design is traced. The intended 
;rpplir:ution and the characteristics of the computer's ancestry fornl a frame- 
\vork for the design, which is filled in by accumulation of the many decisions 
made by its designers. This paper deals with the choice of word length, 
number system. instruction set, memory addressing, and problems of multi- 
ple precision arithmetic. 

.f'ile computer is a parallel, single address machine with more than 
10,000 words of 16 bits. Such a short word length yields advantages of 
efficient storage and speed, but at a cost of logical complexity in connection 
with addressing. instruction selection, and multiple-precision arithmetic. 

1. Introduction 
In this paper we attempt to record the reasoning that led us to 
certain choices in the logical design of the .4pollo Guidance Com- 
puter (AGC). The AGC is an onboard computer for one of the 
forthcoming manned space projects, a fact which is relevant pri- 
marily because it puts a high premium on economy and modularity 
of eclaipment, and results in much specialized input and output 
ciccL(itr,y. The X C ,  however, was designed in the tradition of 
parallel, single-address general-purpose conlpnters, and thus has 
many properties familiar to computer designers [Richards, l%Sj, 
[ B d r n a n  et  al., 19611. \\'e will describe some of the problems 
o f  !:[e:iilping a short word length coruputer, and the way in which 
the tvord length inflnenced some of its characteristics. These 
characteristics are nwnber system, addressing system, order code, 
and Indtiple precision arithmetic. 

. .A secontlary pwpose for this paper is to indicate the role of 
evolution i n  the :\(X's design. Several s d l e r  computers with 
a h l t  the wme strllctrtre had been designed previoctsly. One of 
these. . \ 1 0 1 >  X:. was to ha\.e heen the :\pollo GIitlance Computer, 
h ~ t  a decision to chmlge the IIW;LI~S of electrical irnplementation 
ifrorn core-tr;ulsi?tors t o  integrated circrtits, ufforded the logical 
de4qn(:rs a t r  I I T I I I S I ~ ~ L ~  sccontl ch:tt~ce. 

I t  is o l l r  1)c.lic-f. ;as pxctitionerr o f  logic;)\ h i q n .  that designers, 
c~r~~rq)t~ter \  :t11<1 thc*ir applivatiot>~ c.voIve i n  tillle: that frecplent 
I11.1:1: ' / 'roll \ . .  /:(:-12 (fib. f i \T- f i<K , l ) , . c . c , l ~ l l c . ~ ,  [!)(<:;I 
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reason for a given choice is that it is the same as, or the logical 
nest step to, a choice that was made once before. 

.A recent conference on airborne computers [Proc. Conf. Space- 
bortte Cotnptrter Eng., .haheim, Calif., Oct. 30-31, 19621 affords 
a view of how other designers treated two sposifc problems: word 
length and number system. All of these computers have word 
lengths of the order of 22 to 28 bits, and use a two's complement 
system. The AGC stands in contrast in these two respects, and 
our reasons for choosing as we did may.therefore be of interest 
as a minority view. 

2. Description of the AGC 

The AGC has three principal sections. The first is a memory, the 
fixed (read only) portion of which has 24,376 words, and the 
erasable portion of which has 1024 words. The next section may 
be called the central section; it includes, besides an adder and a 
parity computing register, an instruction decoder (SQ,, a memory 
address decoder (S), and a number of addressable registers with 
either special features or special use. The third section is the 
seqlrence generator which includes a portion for generating various 
microprograms and a portion for processing various interrupting 
requests. 

The backbone of the AGC is the set of 16 write busses: these 
are the means for transferring information betu.een the various 
registers shown i n  Fig. 1. The arrowheads to and from the various 
registers show the possihle directions of infornution flow. 

In Fig. 1, the data paths are sho\\n as solid lines: the control 
paths are shown as broken lines. 
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fig. 1. AGC block diagram. 

M E  both of which were mentioned above. There is also a block 
of addressable registers called "central and special registers," 
which will be discussed later, an arithmetic unit, and an instnlc- 
tion decoder register SQ. 

The arithmetic unit has a parity generating register and an 
adder. These two registers are not explicitly addressable. 

The SQ register bears the same relation to instructions as the 
S register bears to memory locations; neither S nor SQ are ex- 
plicitly addressable. 

The central and special registers are A, Q, Z, LP, and a set of 
input and output registers. Their properties are shown in Table 1. 

Sequence generator 

The sequence generator provides the basic memory timing, the 
sequences of control plllses (microprograms) which constitute an 
instruction, the priority interrupt circllitry. and a n r ~ m t ~ e r  of scal- 
ing networks which provide various pulse frequencies ~ e d  l ~ y  the 
computer and the rest of the navigation s!.stem. 

Instructions are arrangcd so as to last a 1 1  integral nrlmber of 
memory cycles. The list of I 1  instructions is treated ill &tail in 
See. 6.  I n  addition t o  these there are it nu1nl)er o f  "invo1unt:u.y" 
sequences, not Ilnder n o r ~ n ; ~ l  progran~ control. which Illny I)re;~k 
into the nornxd S C C ~ I I C I I C C  o f  instrllctions: thc,se itre triggered eitller 
by esternnl evcllts. or I I ~  ccrtaill overilo\vs \vitIlit1 the ..\<;(;. ;und 
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I. P 

:\ 0000 Central accumulator. Most instructions refer 
to A .  

s 0001 I f  a transfer of control (TC) occurred at L ,  
( 0 )  = L f 1. 

z 0002 Program counter. Contains I, + 1 ,  where L 
is the address of the instruction presently 
being executed. 

0003 Low product register. This register modifies 
words written into it by shifting them in a 
special way. ’ 

IN Several registers which arc used for sampling 
either external lines. or internal computer 
conditions such as time or alarms. 

OUT . . . Several output registers whose bits control 
switches, networks, and displays. 

. . .  

may be divided into two categories: counter incrementing and 
program interruption. 

Counter incrementing may take place between any two mem- 
ory cycles. External requests for incrementing a counter are stored 
in a counter priority circuit. At the end of every memory cycle 
a test is made to see if any incrementing requests exist. If not, 
the nest normal memory cycle is esecuted directly, with no time 
between cycles. If a request is present, an incrementing memory 
cycle is executed. Each “counter” is a specific location in erasable 
memory. The incrementing cycle consists of reading out the word 
stored in the counter register, incrementing it (positively or nega- 
tively), or shifting it, and storing the results back in the register 
of origin. ; i l l  olltstanding counter incrementing requests are proc- 
essed hefore proceeding to the nest normal menlory cycle. This 
type o f  interrupt provides for asynchronous incremental or serial 
entry of information into the working erasable memory. The pro- 
y a m  steps may refer directly to a “counter” to o h i n  the desired 
inform;ttion and do n o t  have to refer to input buffers. Overflows 
from one counter may be used as the input to another. .I further 
property o f  this  system is that the time av:liIal)le for normal pro- 
cram steps is reduced linexrl!. hy the amount of counter activity 
present at any given time. 

Progrml interruption occurs I)et\reen 11ornlal proyr;um steps 

rather thml I)ct\vern ~ n c ~ ~ ~ o r y  cycles. .in interr~~ption cousists o 

storing the contents of t l~c progruu counter anti transferring con 
trol to a fixed location. E;lc.h interrupt line has a different locatior 
associated \rith it. Interrllpting programs may not he interrupted 
hut interrnpt requests are not lost, and are processed as soon a 
the earlier interrupted program is resumed. Culling the resuml 
sequence. which restores the program counter. is initiated I)! 
referencing a special address. 

3. Word length 
In an airborne comptlter, granted the initial choice of parallel 
transfer of words within it, it is highly desirable to minimize the 
word length. This is because memory sense amplifiers, being high- 
gain class .4 amplifiers, are considerably harder to operate with 
wide margins (of temperature, voltages, input signal) than, say, 
the circuits made up of NOR gates. It is best to have as few of 
these as possible. Furthemlore, the number of ferrite-plane inhibit 
drivers equals the number of bits in a word in this case. Similarly, 
the time required for a carry to propagate in a parallel adder is 
proportional to the word length, and in the present case, this factor 
could be expected to affect the microprogram-ning of instructions. 
The initial intent, then, was to have as short a word length as 
possible. 

Another initial choice is that the AGC should be a “common 
storage” machine, which means that instructions may be executed 
from erasable memory as well as from fixed memory, and that data 
(obviously constants, in the case of fixed memory) may be stored 
in either memory. This in t u n  means that the word sizes of both 
types of memory must be compatible in some sense; ,for the tiGC, 
the easiest form of compatibility is to have equal word lengths. 
So-called “separate storage” solutions which allow different word 
lengths for instructions and data can be made to work [IValend- 
ziewicz, 19621 but they have a drawback in that three memories 
are then required: a data memory (erasable), and two fised memo- 
ries, one for instructions and one for constants. In addition, we 
have found that separate storage machines are more awkward to 
program, and use memory less efficiently. than comnmn storage 
machines. 

There are three principal factors in the choive of nord length. 
These are: 
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must be extended into a second register, either 1)y pr(1gr;11111ncc1 
scanning of the counter register, o r  by rlsing a second col~ntcr 
register to receive the overHows of the first. ii'hether proglunllned 
scanning is feasible depends largely on ho\v frequently this scan- 
ning must be done. The cost of using an extra counter register 
is directly rneasured in terms of the priority circuit associated 
with it. 

In the . C C ,  the equipment saved by reducing the word length 
below 13 bits wotlld probably not match the additional expense 
incurred in double-precision extension of many input variables. 
The question is academic, however, since a lower bound on the 
word length is effectively placed by the format of the instruction 
word. 

Instruction word fonnat 

An initial decision was made that instructions would consist of 
an operation code and a single address. The straightforward 
choices of packing one or two such instructions per word were 
the only ones seriously considered, although other schemes, such 
as packing one and a half instructions per word, a re  possible 
[England, 19621. The previous computers MOD 3s and MOD 3C 
had a 3-bit field for operation codes and a 12-bit field for addresses, 
to accommodate their 8 instruction order codes and 4096 words 
of memory. In the initial core-transistor version of the AGC (Le.. 
MOD 3C), the 8 instruction order codes were in reality augmented 
by the various special registers provided, such as shift right, cycle 
left, edit, so that a transfer in and ollt of one of these registers 
would accomplish actions normally specified by the order code 
(see Sec. 6) .  These registers were considered to be more economical 
than the corresponding instruction decoding and control pulse 
sequence generation. Hence the 3 bits assigned to the order code 
were considered adeqrtate, albeit not generous. Fttrtherlnore, as 
will be seen, it is possible to use an indexing instruction so as to  
increase to eleven the ntmber o f  explicit order codes provided 
for. 

The address field of 12 bits presented ;k different problern. At 
the time of the design of \IOD X we estinlated that -1000 words 
would satisfy the storage recpirenlents. H!. the time of redesign 
it was clear that the reqtlirement \vas for 10" \vortls. or nlore. and 
the question then became Ivhether the proposed estension of the 
address field by ;I I)ank register (see Sec. 7 was more ccono~nicnl 
than the addition of 2 bits to the \\vrtl length. For reilsons of 
lnodularit!, of ecI\iipnent. dt l ing 2 Illore I,its to the \vortl length 
wollld resldt i n  ;&ling 2 I I I O ~ C  bits to a l l  thr central ; I I ~  special 
registers. \vhich :cI l rol lnts  t o  incrc;tsiug thc \ide o f  the I I ~ I I I I I ~ I I ~ ~ I ~ > .  

portion o f  thc . \ ( ;C:  I)y I O  p e r  cent. 
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4. Number representation 

S i p e d  ntrmbers 

In the absence of the need to represent numbers of both signs, 
the discussion of number representation would not extend beyond 
the fact that numbers in .4GC are expressed to base two. But the 
accommodation of both positive and negative numbers requires 
that the logical designer choose among at  least three possible forms 
of binary arithmetic. These three principal alternatives are: (1) 
one's complement, (2) two's complement, and (3) s i p  i d  magni- 
tude [Richards. 19553. 

In one's complement aiithmetic, the sign of a number is re- 
versed by complementing every digit, and "end around carry" is 
required in addition of two numbers. 

In  two's conlplement arithmetic, sign reversal is effected by 
cotnplernenting each bit and adding a low order one, or some 
equivalent operation. 

Sign and magnitude representation is typically used where 
direct hrlnun interrogation of memory is desired, as in "post- 
mortem" rnentory dumps. for example, The addition of nlunbers 
of opposite sign requires either one's or two's complementation 
or comparison of nlagnitude, and sometimes may use both. No 
;dvantx!:e i h  offered in efficiency with the possible exception of 
sign chw;iw:. \vhich onl!. requires changing the sign bit. :\ disad- 
wntage .is cncelltleretl in magnetic core logic machines by the 
extra cqrlipncnt rleedctl for subtraction or conditional recomple- 
mentation. 

a 

The one'\ conlplerncnt notation has the advantage of having 
cas!' sign re\.crcal. \vhicll is ecpiv;llent to Boolean conlplenvmta- 
t i o n :  hence it sincle Innchine instrllction performs both hlnctions. 
zero i \  ; I I I I ~ ) ~ < I I I I I I ~ ~ ~  rrprcwltetl I)! a l l  :ero',s and by  d l  OW'S, 

s o  th;lt the nlllnl)cr o f  nlllncrical \t;ltes i n  an J J - I ) ~ ~  word is 2" - 1 .  
TIvo'\ (.o111plt~l1It:tlt ;trithlnctic i h  ;dv;lllt;lgct,lls \ v h c w  e11d 

for inplt coIIvcrsions frolll sllch devices as pattern generators, 
geared e~lcoclers, or binar!. scalers. Sign revers21 ix.  ; ~ ~ ~ . , h ~ r d ,  how- 
ever, since a f t d l  addition is required in the process. 

The choice i n  the case o f  the :\GC was to use one's complelnent 
arithmetic in general processing. and two's complements for cer- 
tain input angle conversions. Since the only arithmetic done in 
the latter case is the addition of plus or minus one, the two's 
conlplelnent facility is pro\.ided sinlply by suppre!;sing end around 
carry and using the proper representation of minus one. The latter 
is stored as a fixed constant. so that no sign reversal is required. 

Modified one's complement system 

In a standard one's complement adder, overflow is detected by 
examining carries into and out of the sign positio? ' I ' h n r ~  owrflow 
indications must be "caught on the fly" and stored separately if 
they are to be acted upon later. The number system adopted in 
the ACC has the advantage of being a one's complement system 
with the additional feature of having a static indication of over- 
flow. The implementation of the method d e p e n b  on 'the AGC's 
not using a parity bit in most central registers. Because of certain 
modular advantages, 16, rather than 15, columns are available in. 
all of the central registers, including the adder. Where the parity 
bit is not required, the extra bit position is used as an extra column. 
The virtue of the 16-bit adder is that the overflow of a 15-bit sum 
is readily detectable upon examination of the two high order bits 
of the sum (see Fig. 2). If both of these bits are the same, there 
is no overflow. If they are different, overflow has occurred with 
the sign of the highest order bit. . 

The interface between the 16-bit adder and the 15-bit memory 
is arranged so that the sign bit of a word coming from memory 
enters both of the two high order adder columns. These are de- 
noted S, and S, since they both have the significance of sign bits. 
\Vhen a word is transferred from the accumulator ,.I to memory, 
only one of these two signs can be stored. Our choice was to store 
the S, bit, which is the standard one's co1nplement sign except 
in the event of overflow, in which case it is the sign of the two 
operands. This preservation of sign on overflow is an important 
asset i n  deding with carries between component \vords of multi- 
ple-precision nulnbers (see Sec. 3). 

In  a standard one's complement system. a series of additions 
may restllt in slhtotals \vhich overflow. yet still produce a valid 
sum so long its the total does not exceed the cnpwity of m e  word. 
I n  a Inodified one's conlplelnent system. however. where sign is 
preserved on overflow, thih is no longer true; and the total may 
depend on the order i n  \vhic.h the Inln1I)ers atltlctl; this is not 
;t serious tlra\vl);~ck, I ) l l t  i t  I n u b t  I)e uccorlntctl f o r  i n  a l l  ph;lses 
o f  logical design ;md proqr:unlning. 
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- . . .  - 
In both systems. 0 0 0 1 1  0 0 0 0 1 1  

0 0 1 0 0  0 0 0 1 0 0  
. ". .. 

E\A>,iPLE 2: Both operands positive; positive overflow. Standard result is nega- 0 1 0 0 1 0 0 1 0 0 1  
tlve: Modified result is positive using S2 as sign of the answer. 0 1 0 1 1 0 0 1 0 1 1  
Posltive overflow indicated by SI * %. 1 0 1 0 0  0 1 0 1 0 0  

-i 
EIAMPLE 3. Both operands negative; Sum negative, no overflow. End around 1 1 1 1 0 1 1 1 1 1 0  

". 

carry occurs. Identical results in both systems using either SI or Sz 1 1 1 0 0 1 1 1 1 0 0  
as the sign of the answer. 1 1 0 1 0  1 1 1 0 1 0  

1 carry 1 carry 
1 1 0 1 1  1 1 1 0 1 1  

. .- . "" 

EXAMPLE 4: Both operands negative; negative overflow. Standard result is posi. 1 0 1 1 0 1 1 0 1 1 0  
tive: modified result is negative using S2 as the sign of the answer. 1 0 1 0 0 1 1 0 1 0 0  
Negative overflow indicated by st * S2. 0 1 0 1 0  1 0 1 0 1 0  

1 carry 1 carry 
0 1 0 1 1  1 0 1 0 1 1  

EXAhlPLE 5: Operands have opposite sign; Sum positive. Identical results i:? both 1 1 1 1 0 1 1 1 1 1 0  
systems. 0 0 0 1 1  0 0 0 0 1 1  

0 0 0 0 1  0 0 0 0 0 1  

. _  

1 carry 1 carry 
0 0 0 1 0  0 0 0 0 1 0  

. - 
EXA?.lPLE 6: Operands have opposite sign: sum negative. Identical results in 1 1 1 0 0 1 1 1 1 0 0  

both systems. 0 0 0 0 1  0 0 0 0 0 1  
1 1 1 0 1  1 1  1 ' 1  0 1 

Flg. 2. Illustrative example of properties of modified one's complement system. 

representation in which the sign bits of all component words agree. 
The method used in the AGC allows the signs of the components 
to be different. 

Independent signs arise naturally in mrlltiple-precisioll addition 
and srd)traction, and the identical sign representation is costly 
becarlse sign reconciliation is recpired after every operation. For 
example, (+6, +-I) + (- 4, - 6)  = (+2 ,  -3. a mixed sign repre- 
sentation of ( +  1 ,  +8). Since addition and subtruction are the most 
frequent operations, it is econornicai to store the resnlt as it ot'cIIrs 
and reconcile signs only when necessary. \\'hen overflow occltrs 
in the addition of two components, a o n ( '  \vith the sign o f  the 
overflow is carried to the acltlition of the nest highcr conlponc*tjts. 
The SIII I I  that overllowerl ret;tiws the sign o f  its t)per:uds. This 
ovcrlIo\v is ternled it11 intc+)rc t o  distinguish i t  t ' r o ~ ~ ~  i111 o ~ r l l o \ v  
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t11:tt ; ~ ~ i . ; c ~ ~  wiltql the n 1 ; n i l l l l l l l l  ~ ~ ~ ~ ~ l t i ~ ) l ~ - ~ ) r e c i s i o ~ l  I I I I I I I I ) ~ ~  is cs-  
cc~crltd. 

Thc i~ l t fepc~~l l le~~t  s i p  111et11od has a pitfdl arising from the fact 
thiat e\.c~.!. n1111ll1er has t u o  representations, either one of nvhich 
I11:tv occI(r its :a sun1. There are so~ne  nunhers for which one of 
the representiations esceeds the capacity of the most significant 
coqol ren t .  The overflow is false in the sense that the double- 
prc.cisiol1 capc i ty  is not esceeded, only the single word capacity 
of the 11pper component. Sign reconciliation can be used in this 
case t o  \ , i c l d  :in acceptal)le representation. This prol)lern can be 
avoidecl i f  a l l  nunhers are scaled so that none are large enough 
to protluce false overflows. Such a restriction is not necessary, 
hotvever, since the false overflow condition arises infrequently and 
can be detected at no expense in time. The net cost of reconcilia- 
tion is therefore very low. 

iWtItiplication and division 

For triple and higher orders of precision, multiplication and divi- 
sion become excessively complex, unlike addition and subtraction 
where the complexity is only linear with the order of precision. 

The algorithm for double-precision multiplication is dire&y 
applicable to numbers in the independent sign notation. False 
overflow does not arise, and the treatment of interflow is simplified 
by an automatic counter register which is incremented when 
overflow occurs during an add instruction. The sign of the counter 
increment is the same as the sign of the overflow; and the incre- 
ment takes place while one of the product components of next 
higher order is stored in that counter. 

Double-precision division is exceptional in that the independ- 
ent sign notation may not be used; both operands must be made 
positive in  identical sign form, and the divisor normalized so that 
the left-most nonsign bit is one. 

Triple prccision 

:I fe\v triple-precision quantities are used in the .iCC. These are 
added and stlbtracted Itsing independent sign notation with inter- 
flo\v and overflow features the Same as those used for double- 
prccision arithmetic. 

Section 1 1 Processors with one address per instruction 

2 Storing in wetnor> 

3 Negating (cornl’lellrelrtillS) 

-! Combining two opermds (e.g.. adtlitioni 

5 Address modification (more generally, cwcutiug as an in- 
struction the result of arithmetic processing) 

6 Normal sequencing (to each location from which an instruc- 
tion can be executed there correspo~~ds OW location whose 
contents are the nest instruction) 

7 Conditional sequence changing, or transfcr of control 

8 Input 

9 Output 

.4n instruction can, of course, provide scvclR1 of ~lrcse facilities. 
For instance, some computers have an instruction that subtracts 
the contents of a memory location from an acrmmulaic~r and leaves 
the result in that memory location and in the. ~ w w n v b t o r ;  this 
instruction fulfills all of requirements 1.4 a1)w-c:. 1tcquil:cment 5 
is met in a somewhat primitive manner if inst>uctions can be  
executed from erasable memory, and is met clcgantly by the use 
of index registers. Still another scheme, somcwhat similar to  one 
used in the Bendix G-20, is employed in the AGC. Requirement 
6 is usually fulfilled by having an instruction location counter 
which contains the address of the next instruction to be executed, 
and is incremented by one when an instruction is fetched. Alter- 
natively, each instruction may include the adchess of the next 
instruction, as is often done in machines having drum memories. 
In the AGC, as in most short-word computexs, the former method, 
with one single-address instruction per word, is clearly the simplest 
and cheapest. Requirement 7 is generally met by eramining a 
condition such as the s i p  of an accumulator and ,  if tllc condition 
is satisfied, either incrementing the instruction lo~a l ion  counter 
(skipping). or using an address included in tllc ills11 uc-lion as that 
of the next instruction (conditional transfer of rontlol). An uncon- 
ditional transfer of control is usual b u t  not ncwssary, since any 
desired condition can be forced. !dost mwlrincs have special 
input-output instructions to satisfy requirewents S and 9. I n  the 
:\C,C. ho\vever, since input and outptt is th1o[1$ iddressable 
registers. inplrt is sul)snmed under fetching from lnenlory, and 
ontput under storing in memory. Counter incrementing and pro- 
p u n  interruptiou aid these fwctions nlso. 

Further critcrio 

The majo r  goals i n  the ACC: were cfficicwt usr o f  Incnlory. reason- 
d)Ie speetl o f  colnputing. potenti;d fo r  cIeg:mt prog:’”Inming, effi- 
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c , i c s l l t  Illllltiplc precision arithllwtic. efficient processing of i n p l t  

;111tl o t l t p t .  and rensonal)le silllplicity o f  the sequence generator. 
The constraints affecting the order code as a whole were the word 
Iellgth. one‘s complement notation, parallel data transfer, and the 
cllaractrristics of the editing registers. The ground ndes governing 
the choice of instntctions arose from these goals and constraints. 

( 1  Three bits of an instruction word are devoted to operation 
code. 

11 .iddress modification must be convenient and efficient. 

c There should be a multiply instruction yielding a double 
length product. 

d Treatment of overflow 011 addition must be flexible. 

e -4 Boolean combinatorial operation should be available. 

f XO instruction need be devoted to input, output, or shifting. 

This list is by no means complete, but gives a good indication of 
what kind of computer the AGC has to be. In the following para- 
graphs the ways in which the instructions fulfill the above require- 
ments are described. 

Details of the instruction set 

In the listing that follows, L denotes the location of the instruction; 
K denotes the data address contained in the instruction. Paren- 
theses mean “content of,” and the leftward arrow means that the 
register named at  the arrowhead is set to the quantity named to 
the right. 

L: TC K ;  Transfer Control 
Q e- L + 1; go to R. 
This is the primary method of transferring control to any stated 

location, and thus meets part of requirement 7. The setting of the 
return address register Q renders complex subroutines feasible. T C  
(1 ma!’ be used to return from a sdxorttine (with no other TC’s) 
Iwcause the binary ntlmber “ L  + 1” is the same as the binary word 
“TC L + 1,” by virtue of the TC code being all zeros. TC A 
1)chaves like an “execute” instruction, executing whatever instruc- 
t i o n  i s  in A, because @ follows A in the address pattern. see 
Td)le 1. 

I,: CCS K :  Cortnt, Cotnpmv, and S k i p  
I f  i l i )  > +0, ;I + (Ki) - 1. no skip: if  ( K )  = $0. A +- +O. skip 
t o  1, + 7; if ( K )  < -0. A - 1 - (K) .  skip to I, + 3 :  i f  ( l i )  = 
-0, A c +O, skip to I, + 1. 
This instrllction flllfills the remainder of rcclllircment 7 und 

~ ) r ~ ~ v i t l e s  wveral fcat~~res .  I t  is clear that i n  il mnchitlc. tvith :I :3-l)it 

operation code thcre s h o ~ ~ l d  I w  o n l y  one cotlc devoted entirely t o  
Imnching. if at a l l  possible. I t  is inefficient to program a zero test 
using onl!. a sign-testing code: i t  is even more inefficient to pro- 
gram a sign test using only a zero-testing code. This instruction 
was therefore designed to test both types of conditions simultane- 
o d y .  It has to be a four-way branch, and since there is only one 
address per instn~ction, it follows that CCS must be a skipping- 
type branch. 

The hmction of (K)  delivered to A is the diminished absolute 
value (D.-\BS). It serves two primary purposes: to do most of the 
work in generating an absolute value, and to apply a negative 
increment to the contents of a loop-counting register, so that CCS 
has some of the properties of T I S  in the IBM 704. 

L: IXDEX E(; Index using K 
Use ( L  + 1) + ( K )  as the next instruction. 
In a short-word machine where there is no room in the instruc- 

tion word to specify indexing or indirect addressing, this code 
meets requirement 5 in a way far superior to forming an instruction 
and placing it in A or in erasable memory for execution. INDEX 
operates on whole words, so that the operation code as well as 
the address may be modified. It may be used recursively (consider 
the implications of several INDEX’S in succession, assuming that 
no operation codes are modified). Finally, it permits more than 
8 operation codes to be specified in 3 bits, since overflow of the 
indexing addition is detectable. 

L: SCH R; Exchange 

This instruction meets requirements 1, 2, and 8. When K is 
in fixed memory, it is simply a data-fetching (clear and add) code. 
Its use with erasable memory aids efficiency by reducing the need 
for temporary storage. XCH is also an important input instruction 
in a machine where addressable counters, incremented in response 
to external events, are an input medium, because a counter can 
be read out and reset (to zero or any desired valrte) by SCH with 
no chance of missing a count. 

L: CS K ;  Clear anti Srtbtruct 
A c - ( K ) .  
CS is the primary means of sip-changing and logical negation. 

and so fulfills requirements I and G .  Since there is no clear and 
add instruction, it is the usual operation for nondestn~ctive re;dout 
of erasable memory in simple data transfers. that is. when 110 

addition or other arithmetic is required. Usually the progralnminc 
can be arranged so that complementing thlring transfer is acc<*pt- 
able; otherwise the CS can Ile followed b y  CS :\ before Storill<. 

L: TS R;  ’li,rnsfcr t o  Stornfc’ 
t i f  (,.I) incllltles o v e r h v .  ;\ + = I .  skip I o  I ,  + 2. 
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clude the property of skipping on overllow, althottgh it did have 
properties which aided mdi r rg .  

After the design of MOD .3C was completed, it was discovered 
th;lt the INDEX instruction codd be used to expand the instruc- 
tion set beyond eight instructions I)y producing overflow in the 
instruction word following the INDEX. For example, the addition 
of oc td  47777 to the instruction word "CS K" in the course of 
an INDEX instruction will cause negative overflow, producing bIP 
K .  a multiply instruction with operand address K .  

In order to implement the extracodes in the AGC, it was 
necessary to provide a path from the high-order 4 bits of the adder 
to the unaddressable sequence selection register SQ. Part of this 
path is the unaddressable buffer register B ;  these requirements 
helped to suggest the benefits of retaining two sign bit positions 
in all the central registers. 

In principle, eight additional instruction codes can be obtained 
by causing overflow, but we did not feel obliged to use them all. 
Because every extracode must be indexed, the instructions chosen 
for this class had two properties to some degree: they are normally 
indexed, or they take long enough so that the cost of indexing 
without address modification is small. All the extracodes are com- 
binatorial, and therefore relate to requirement 4. 

L: MP K ;  Multiply 
A t upper part, LP c lower part, of (A) * ( K ) ;  the two words 

of the product agree in sign, which is determined strictly by the 
sign bits of the operands. 

Experience with MOD 3C showed that it was worthwhile 
making a completely algebraic, self-contained multiply instruction, 
especially in doing double-precision multiplication whose oper- 
ands have independent signs. The AGC multiply is much faster 
than that of MOD 3C, being limited by adder carry propagation 
time rather than core-switching time. 

L: DV K ;  Dicide 
A t qrtotient, Q c - I remainder\, of ( A ) / ( K ) ;  LP c nonzero 
nuln1)er with the sign of the quotient. 
Many facets of AGC design originally adopted for other reasons 

combined to make a divide instrnction inexpensive. The foremost 
of these is the nature of the editing registers, which are in the 
standard crasulde memory and have no special wiring. The special 
properties of these registers are supplied by a shift or cycle of the 
word being written into the memory local register G, when the 
address o f  an editing register is selected. The central loop of DV 
selects sllch an address ant1 in1lil)its Inellwry operations. so that 
all the left shifts recllliretl i n  division are accon~plishecl in the C 
register while thc ctlitiyg rrgistcsr itself ren1;rins ttnchmgetl. The 
rllicroprograr~~I~lec1 Iraturc o f  orclcr constrllctioll ~nakes a restoring 
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B 

D 

. ~ l < o v i t 1 1 1 1 1  nwre cffic.ityIt th;ul ;I n o ~ ~ r e ~ t o r i n g  one. The cplotient 
c[l~li\~crcd to ;\ has s i p  d e t e r ~ ~ ~ i n e t l  accorcling to n o r n d  algebraic 
rl1lt.s \)y the s i p s  of (-4) and (K): the same sign is available in LP 
to ;lid i n  determining the correct sign of the remainder from those 
,,( thr clivisor and quotient in c u e  the quotient has been al)sorbed 
1 1 ,  s(1l)sequent processing. D\; is not usuall; indexed, but it pays 
, I l c . h  large benefits in space and time, especially in doulde-pre- 
L , ~ \ i o ~ ~  division. that the cost of extracode indexing is negligihle. 
11 t l w  tli\isor is less in magnitude than the dividend, or is zero, 
t l l c  q ~ ~ o t i e n t  has correct sign and, in general, maximum magnitude. 
~o infinite loop results in any case. 

Id: SI’ 6; Srrbtrtlct 
.I +(&I) - ( K ) ;  if the final (A) includes & overflow, 

The primary justification for this instruction is that it allows 
multiple-precision addition subroutines to be changed into multi- 
ple-precision subtract subroutines merely by changing the indexing 
quantity. There are occasions in the middle of involved calcula- 
tious where it is clumsy to construct a subtraction out of comple- 
mentations and additions, especially when the sign of an overflow 
is of interest. Since SU differs from AD only in that the operand 
from memory is read out of the complement side of the buffer 
register B rather than the direct side, its cost is virtually zero. 
This last is not necessarily true when using core-transistor logic, 
or two‘s complement notation. 

O\,*CTR t (OVCTR) 21. 

7. Expansion of memory addressing 

The AGC’s 12-bit address field is insufficient for specifying directly 
all the registers in its memory. This predicament seems increas- 
ingly to afflict most computers, either because indirect addressing 
is assumed as a necessary evil from the start or, as was our case, 
I)ecause our earliest estimates of memory requirements were wrong 
I)? a factor of two or three. The method of indirect addressing 
\rc arrived at uses a bank register MB, but with an important 
~nodification: the 3-bit number stored in SIB has no effect unless 
the atldress is i n  the range (octal) 6000 to 7 7 X .  The LIB register 
vontents are not interpreted as higher-order bits of the address; 
the!. are interpreted as integers which specify which I)ank of 1024 
\ ~ o r d s  is meant i n  the event of the address part of the instruction 
h n q  in the aml)iguous range. The over-all map of rnelnory is 
\ho\\.n in Table 2. The u1lalnbigllorls. fised memory addresses 
( I o n l a i u  has co~ne to be k n o w n  as “fisccl-fised.” 

I t  is interesting that this methot] o f  extending the iddressing 
cq~11)iIity was not the result of trying to inaprove 1 t p o 1 1  wore 
c (~ l~ \ .cwt io~~aI  ~nctlaods, b u t  \vas ahlost coIIse(penct~ o f  the phys- 

Table 2 Address part of an instruction word 

(Dccimul)  

0-3071 Fixed and erasable memory: unambiguous addresses. 
3072-4095 Fixed memory, ambiguous address. Contents of MB 

used to resolve the ambiguity. Up to 32 such banks 
are possible. 

ical difference between fixed and erasable memory. Since all data 
other than constants are concentrated in the erasable memory, 
these had to be exempt from modification by the MB register. h n  
alternative arrangement, whereby only .the addresses of instruc- 
tions (as opposed to the addresses within an instruction word) are 
modified, would be deficient in that it would allow only instruc- 
tions to be stored in banks; there would be no way to refer to 
constants stored in banks, or to use bank addresses to store a r y -  
ments of arithmetic operations. The possibility of using two bank 
registers is worthy of serious consideration [Casale, 19621, but it 
did not occur to us. 

In addition to the addresses in erasable, it is necessary to  
exempt the addresses of interrupting programs (i.e., the addresses 
to which a program interrupt transfers control) from the influence 
of the MB register. It was clear that it would be valuable to have 
a large body of unambiguous addresses for use in executive and 
dispatcher programs. 

The most frequent and critical applications of bank changing 
are in the ..\GC’s interpretive mode. Most of the programs relevant 
to navigation are written in a parenthesis-free pseudocode notation 
for economy of storage. An interpretive program executes these 
pseudocode program by performing the indicated data accesses 
and subroutine linkages, 

The format of the notation permits two macrooperators (e.g., 
“double-precision vector dot product”) or one data address to be  
stored in one hGC word. Thus data addresses appear as fill1 15-bit 
words, potentially capable of addressing up to -32.768 registers. 
Each such address is examined in the interpreter and the contents 
of the bank register are changed if  necessary; preparation is ulso 
made for sul~sequent return if ;I subroutine call is lwing made. 

The structure of the interpretive program, and its relationship 
to the computer characteristics discussed in this paper will not 
be taken up here except to point out that parenthesih-free notation 
is partictli;dy vaIt1d11e i n  a short-word computer s11c.11 as the :\CC. 
It permits a very slhstantiul espnsion of the address and pseudo- 
operation fields witlmtt x;ac.rificing efficiency in program storage 
[hluntx. 1 ! ) ( 2 ] .  
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The conversion of a 15-11it address into ;I bank  nrltnber and ;UI 

anI1)igyous 12-I)it address is as follows: the top 5 bits correspond 
dirrctl!, to the desired Ixunk number. The remaining lower-order 
1 0  bits. logicully added to octal 6000. form the proper ambigrtotts 
address. If the 15-bit address is less than octal 6(H)0, however. the 
atldress is i n  er;lsalde or fixed-fixed nw~nory. In this case the logical 
additiou o f  octal 6000 is suppressed. 

It is possilde to have a prograln in one bank call a closed 
sd)routine in another bank, and then have control returned to the 
proper place i n  the bank of origin. This is done by means of a 
short bank switching routine which is in fixed-fised memory. 

One potential awkwardness about this method of extending 

- 
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nlelnory addresses is the possil)le requirement for a routine in one 
bank to have access to large amounts of data stored in another. 
There are many programming solutions to this problem. obviously 
at  a cost in operating speed: a better solution would be to have 
t\vo bank registers. No problems of this nature have yet material- 
ized. however. 
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APPENDIX 1 BACKGROUND FOR AGC DESIGN 

Same, Memory size 
date ( F  = fixed h'umber Number of Purpose Features incorporated. 
completed E = erasable) of M t s  instrlrctions of design at this stage 

MOD 1 ,  F:448 11 and parity 4 plus involuntary Feasibility Prototype Counter increments, 
1960 E: 64 Interrupts, 

Core-Transistor Logic, 
Pulse rate outputs, 
Editing registers, 
Wired-in fixed memory, 
Interpretive programs. 

MOD 2, about 4000 total 23 and parity 16 plus indirect 
not built 

MOD 3s. F 3584 15 and parity 8 
1962 E: 512 

Unmanned Space Probe "Extended Operation" subroutine 
linkages (only instance). 

Earth Satellite Modified one's complement, 
Parallel adder, 
Addressable central registers. 

CCS, INDEX. MULTIPLY in. 
structions. 

Overflow counter, 
Bank switchmg. 

AGC. F: greater than 10' 15 and parity 1 1  and involuntary Apollo Guidance 
1963 E: greater than 10:' 

DV, SU. MSK instructions. 
Editing memory buffer. 
All transistor NOR logic instead of 

core.transistor logic, 
Extracodes. 
Parenthesls.free interpreter. 


