
Chapter 7

Some aspects of the logical design of
a control computer: a case study1

511mmury Some logical aspects of a digital computer for a space vehicle
;ire de3cribed. and the evolution of its logical design is traced. The intended
;rpplir:ution and the characteristics of the computer's ancestry fornl a frame-
\vork for the design, which is filled in by accumulation of the many decisions
made by its designers. This paper deals with the choice of word length,
number system. instruction set, memory addressing, and problems of multi-
ple precision arithmetic.

.f'ile computer is a parallel, single address machine with more than
10,000 words of 16 bits. Such a short word length yields advantages of
efficient storage and speed, but at a cost of logical complexity in connection
with addressing. instruction selection, and multiple-precision arithmetic.

1. Introduction
In this paper we attempt to record the reasoning that led us to
certain choices in the logical design of the .4pollo Guidance Com-
puter (AGC). The AGC is an onboard computer for one of the
forthcoming manned space projects, a fact which is relevant pri-
marily because it puts a high premium on economy and modularity
of eclaipment, and results in much specialized input and output
ciccL(itr,y. The X C , however, was designed in the tradition of
parallel, single-address general-purpose conlpnters, and thus has
many properties familiar to computer designers [Richards, l%Sj,
[B d r n a n et al., 19611. \\'e will describe some of the problems
o f !:[e:iilping a short word length coruputer, and the way in which
the tvord length inflnenced some of its characteristics. These
characteristics are nwnber system, addressing system, order code,
and Indtiple precision arithmetic.

. .A secontlary pwpose for this paper is to indicate the role of
evolution i n the :\(X's design. Several s d l e r computers with
a h l t the wme strllctrtre had been designed previoctsly. One of
these. . \ 1 0 1 > X:. was to ha\.e heen the :\pollo GIitlance Computer,
h ~ t a decision to chmlge the IIW;LI~S of electrical irnplementation
ifrorn core-tr;ulsi?tors t o integrated circrtits, ufforded the logical
de4qn(:rs a t r I I T I I I S I ~ ~ L ~ sccontl ch:tt~ce.

I t is o l l r 1)c.lic-f. ;as pxctitionerr o f logic;)\ h i q n . that designers,
c~r~~rq)t~ter \ :t11<1 thc*ir applivatiot>~ c.voIve i n tillle: that frecplent
I11.1:1: ' / 'roll \ . . /:(:-12 (fib. f i \T- f i<K , l) , . c . c , l ~ l l c . ~ , [!)(<:;I

146

reason for a given choice is that it is the same as, or the logical
nest step to, a choice that was made once before.

.A recent conference on airborne computers [Proc. Conf. Space-
bortte Cotnptrter Eng., .haheim, Calif., Oct. 30-31, 19621 affords
a view of how other designers treated two sposifc problems: word
length and number system. All of these computers have word
lengths of the order of 22 to 28 bits, and use a two's complement
system. The AGC stands in contrast in these two respects, and
our reasons for choosing as we did may.therefore be of interest
as a minority view.

2. Description of the AGC

The AGC has three principal sections. The first is a memory, the
fixed (read only) portion of which has 24,376 words, and the
erasable portion of which has 1024 words. The next section may
be called the central section; it includes, besides an adder and a
parity computing register, an instruction decoder (SQ,, a memory
address decoder (S), and a number of addressable registers with
either special features or special use. The third section is the
seqlrence generator which includes a portion for generating various
microprograms and a portion for processing various interrupting
requests.

The backbone of the AGC is the set of 16 write busses: these
are the means for transferring information betu.een the various
registers shown i n Fig. 1. The arrowheads to and from the various
registers show the possihle directions of infornution flow.

In Fig. 1, the data paths are sho\\n as solid lines: the control
paths are shown as broken lines.

Chapter 7 I Some aspects of the logical design of a control computer: a case study 147

. . . " ."

7 MEMORY AODRESS - 5 --- ""_"
c REGISTER ~ - - - - - - - - " I I

A4.Q In I
I
I
I

PRIORITY I CENTRAL 0 3 I

I
I
I
I
I
I
I

I I MEMORY BANK c"c
w
In

REGISTER m 3 PRIORITY CKTS I ' a
INTERRUPT PRIORITY =
COUNTER INCREMENT ' ADDRESSABLE A 0:

I I

1 t .
T Q U E N C E

GENERATOR

INSTQUCTION

FIXED MEMORY p=i
RASABLE MEMORY

-11

T' MICROPROGRAM PllSES I
I
I
I
I
I

I

i "_
I

Control paths - Data paths

fig. 1. AGC block diagram.

M E both of which were mentioned above. There is also a block
of addressable registers called "central and special registers,"
which will be discussed later, an arithmetic unit, and an instnlc-
tion decoder register SQ.

The arithmetic unit has a parity generating register and an
adder. These two registers are not explicitly addressable.

The SQ register bears the same relation to instructions as the
S register bears to memory locations; neither S nor SQ are ex-
plicitly addressable.

The central and special registers are A, Q, Z, LP, and a set of
input and output registers. Their properties are shown in Table 1.

Sequence generator

The sequence generator provides the basic memory timing, the
sequences of control plllses (microprograms) which constitute an
instruction, the priority interrupt circllitry. and a n r ~ m t ~ e r of scal-
ing networks which provide various pulse frequencies ~ e d l ~ y the
computer and the rest of the navigation s!.stem.

Instructions are arrangcd so as to last a 1 1 integral nrlmber of
memory cycles. The list of I 1 instructions is treated ill &tail in
See. 6. I n addition t o these there are it nu1nl)er o f "invo1unt:u.y"
sequences, not Ilnder n o r ~ n ; ~ l progran~ control. which Illny I)re;~k
into the nornxd S C C ~ I I C I I C C o f instrllctions: thc,se itre triggered eitller
by esternnl evcllts. or I I ~ ccrtaill overilo\vs \vitIlit1 the ..\<;(;. ;und

148 Part 2 1 The instruction-set processor: main.line computers Section 1 I Processors with one address per instructio

I. P

:\ 0000 Central accumulator. Most instructions refer
to A .

s 0001 I f a transfer of control (TC) occurred at L ,
(0) = L f 1.

z 0002 Program counter. Contains I, + 1 , where L
is the address of the instruction presently
being executed.

0003 Low product register. This register modifies
words written into it by shifting them in a
special way. ’

IN Several registers which arc used for sampling
either external lines. or internal computer
conditions such as time or alarms.

OUT . . . Several output registers whose bits control
switches, networks, and displays.

. . .

may be divided into two categories: counter incrementing and
program interruption.

Counter incrementing may take place between any two mem-
ory cycles. External requests for incrementing a counter are stored
in a counter priority circuit. At the end of every memory cycle
a test is made to see if any incrementing requests exist. If not,
the nest normal memory cycle is esecuted directly, with no time
between cycles. If a request is present, an incrementing memory
cycle is executed. Each “counter” is a specific location in erasable
memory. The incrementing cycle consists of reading out the word
stored in the counter register, incrementing it (positively or nega-
tively), or shifting it, and storing the results back in the register
of origin. ; i l l olltstanding counter incrementing requests are proc-
essed hefore proceeding to the nest normal menlory cycle. This
type o f interrupt provides for asynchronous incremental or serial
entry of information into the working erasable memory. The pro-
y a m steps may refer directly to a “counter” to o h i n the desired
inform;ttion and do n o t have to refer to input buffers. Overflows
from one counter may be used as the input to another. .I further
property o f this system is that the time av:liIal)le for normal pro-
cram steps is reduced linexrl!. hy the amount of counter activity
present at any given time.

Progrml interruption occurs I)et\reen 11ornlal proyr;um steps

rather thml I)ct\vern ~ n c ~ ~ ~ o r y cycles. .in interr~~ption cousists o

storing the contents of t l~c progruu counter anti transferring con
trol to a fixed location. E;lc.h interrupt line has a different locatior
associated \rith it. Interrllpting programs may not he interrupted
hut interrnpt requests are not lost, and are processed as soon a
the earlier interrupted program is resumed. Culling the resuml
sequence. which restores the program counter. is initiated I)!
referencing a special address.

3. Word length
In an airborne comptlter, granted the initial choice of parallel
transfer of words within it, it is highly desirable to minimize the
word length. This is because memory sense amplifiers, being high-
gain class .4 amplifiers, are considerably harder to operate with
wide margins (of temperature, voltages, input signal) than, say,
the circuits made up of NOR gates. It is best to have as few of
these as possible. Furthemlore, the number of ferrite-plane inhibit
drivers equals the number of bits in a word in this case. Similarly,
the time required for a carry to propagate in a parallel adder is
proportional to the word length, and in the present case, this factor
could be expected to affect the microprogram-ning of instructions.
The initial intent, then, was to have as short a word length as
possible.

Another initial choice is that the AGC should be a “common
storage” machine, which means that instructions may be executed
from erasable memory as well as from fixed memory, and that data
(obviously constants, in the case of fixed memory) may be stored
in either memory. This in t u n means that the word sizes of both
types of memory must be compatible in some sense; ,for the tiGC,
the easiest form of compatibility is to have equal word lengths.
So-called “separate storage” solutions which allow different word
lengths for instructions and data can be made to work [IValend-
ziewicz, 19621 but they have a drawback in that three memories
are then required: a data memory (erasable), and two fised memo-
ries, one for instructions and one for constants. In addition, we
have found that separate storage machines are more awkward to
program, and use memory less efficiently. than comnmn storage
machines.

There are three principal factors in the choive of nord length.
These are:

Chapter 7 I Some aspects of the logical design of a control computer: a case study 149

must be extended into a second register, either 1)y pr(1gr;11111ncc1
scanning of the counter register, o r by rlsing a second col~ntcr
register to receive the overHows of the first. ii'hether proglunllned
scanning is feasible depends largely on ho\v frequently this scan-
ning must be done. The cost of using an extra counter register
is directly rneasured in terms of the priority circuit associated
with it.

In the . C C , the equipment saved by reducing the word length
below 13 bits wotlld probably not match the additional expense
incurred in double-precision extension of many input variables.
The question is academic, however, since a lower bound on the
word length is effectively placed by the format of the instruction
word.

Instruction word fonnat

An initial decision was made that instructions would consist of
an operation code and a single address. The straightforward
choices of packing one or two such instructions per word were
the only ones seriously considered, although other schemes, such
as packing one and a half instructions per word, a re possible
[England, 19621. The previous computers MOD 3s and MOD 3C
had a 3-bit field for operation codes and a 12-bit field for addresses,
to accommodate their 8 instruction order codes and 4096 words
of memory. In the initial core-transistor version of the AGC (Le..
MOD 3C), the 8 instruction order codes were in reality augmented
by the various special registers provided, such as shift right, cycle
left, edit, so that a transfer in and ollt of one of these registers
would accomplish actions normally specified by the order code
(see Sec. 6) . These registers were considered to be more economical
than the corresponding instruction decoding and control pulse
sequence generation. Hence the 3 bits assigned to the order code
were considered adeqrtate, albeit not generous. Fttrtherlnore, as
will be seen, it is possible to use an indexing instruction so as to
increase to eleven the ntmber o f explicit order codes provided
for.

The address field of 12 bits presented ;k different problern. At
the time of the design of \IOD X we estinlated that -1000 words
would satisfy the storage recpirenlents. H!. the time of redesign
it was clear that the reqtlirement \vas for 10" \vortls. or nlore. and
the question then became Ivhether the proposed estension of the
address field by ;I I)ank register (see Sec. 7 was more ccono~nicnl
than the addition of 2 bits to the \\vrtl length. For reilsons of
lnodularit!, of ecI\iipnent. dt l ing 2 Illore I,its to the \vortl length
wollld resldt i n ;&ling 2 I I I O ~ C bits to a l l thr central ; I I ~ special
registers. \vhich :cI l rol lnts t o incrc;tsiug thc \ide o f the I I ~ I I I I I ~ I I ~ ~ I ~ > .

portion o f thc . \ (;C: I)y I O p e r cent.

Section 1 j Processors with one address per instruction

4. Number representation

S i p e d ntrmbers

In the absence of the need to represent numbers of both signs,
the discussion of number representation would not extend beyond
the fact that numbers in .4GC are expressed to base two. But the
accommodation of both positive and negative numbers requires
that the logical designer choose among at least three possible forms
of binary arithmetic. These three principal alternatives are: (1)
one's complement, (2) two's complement, and (3) s i p i d magni-
tude [Richards. 19553.

In one's complement aiithmetic, the sign of a number is re-
versed by complementing every digit, and "end around carry" is
required in addition of two numbers.

In two's conlplement arithmetic, sign reversal is effected by
cotnplernenting each bit and adding a low order one, or some
equivalent operation.

Sign and magnitude representation is typically used where
direct hrlnun interrogation of memory is desired, as in "post-
mortem" rnentory dumps. for example, The addition of nlunbers
of opposite sign requires either one's or two's complementation
or comparison of nlagnitude, and sometimes may use both. No
;dvantx!:e i h offered in efficiency with the possible exception of
sign chw;iw:. \vhich onl!. requires changing the sign bit. :\ disad-
wntage .is cncelltleretl in magnetic core logic machines by the
extra cqrlipncnt rleedctl for subtraction or conditional recomple-
mentation.

a

The one'\ conlplerncnt notation has the advantage of having
cas!' sign re\.crcal. \vhicll is ecpiv;llent to Boolean conlplenvmta-
t i o n : hence it sincle Innchine instrllction performs both hlnctions.
zero i \ ; I I I I ~) ~ < I I I I I I ~ ~ ~ rrprcwltetl I)! a l l :ero',s and by d l OW'S,

s o th;lt the nlllnl)cr o f nlllncrical \t;ltes i n an J J - I) ~ ~ word is 2" - 1 .
TIvo'\ (.o111plt~l1It:tlt ;trithlnctic i h ;dv;lllt;lgct,lls \ v h c w e11d

for inplt coIIvcrsions frolll sllch devices as pattern generators,
geared e~lcoclers, or binar!. scalers. Sign revers21 ix. ; ~ ~ ~ . , h ~ r d , how-
ever, since a f t d l addition is required in the process.

The choice i n the case o f the :\GC was to use one's complelnent
arithmetic in general processing. and two's complements for cer-
tain input angle conversions. Since the only arithmetic done in
the latter case is the addition of plus or minus one, the two's
conlplelnent facility is pro\.ided sinlply by suppre!;sing end around
carry and using the proper representation of minus one. The latter
is stored as a fixed constant. so that no sign reversal is required.

Modified one's complement system

In a standard one's complement adder, overflow is detected by
examining carries into and out of the sign positio? ' I ' h n r ~ owrflow
indications must be "caught on the fly" and stored separately if
they are to be acted upon later. The number system adopted in
the ACC has the advantage of being a one's complement system
with the additional feature of having a static indication of over-
flow. The implementation of the method d e p e n b on 'the AGC's
not using a parity bit in most central registers. Because of certain
modular advantages, 16, rather than 15, columns are available in.
all of the central registers, including the adder. Where the parity
bit is not required, the extra bit position is used as an extra column.
The virtue of the 16-bit adder is that the overflow of a 15-bit sum
is readily detectable upon examination of the two high order bits
of the sum (see Fig. 2). If both of these bits are the same, there
is no overflow. If they are different, overflow has occurred with
the sign of the highest order bit. .

The interface between the 16-bit adder and the 15-bit memory
is arranged so that the sign bit of a word coming from memory
enters both of the two high order adder columns. These are de-
noted S, and S, since they both have the significance of sign bits.
\Vhen a word is transferred from the accumulator ,.I to memory,
only one of these two signs can be stored. Our choice was to store
the S, bit, which is the standard one's co1nplement sign except
in the event of overflow, in which case it is the sign of the two
operands. This preservation of sign on overflow is an important
asset i n deding with carries between component \vords of multi-
ple-precision nulnbers (see Sec. 3).

In a standard one's complement system. a series of additions
may restllt in slhtotals \vhich overflow. yet still produce a valid
sum so long its the total does not exceed the cnpwity of m e word.
I n a Inodified one's conlplelnent system. however. where sign is
preserved on overflow, thih is no longer true; and the total may
depend on the order i n \vhic.h the Inln1I)ers atltlctl; this is not
;t serious tlra\vl);~ck, I) l l t i t I n u b t I)e uccorlntctl f o r i n a l l ph;lses
o f logical design ;md proqr:unlning.

Chapter 7 I Some aspects of the logical design of a control computer: a case study 151

- . . . -
In both systems. 0 0 0 1 1 0 0 0 0 1 1

0 0 1 0 0 0 0 0 1 0 0
. ". ..

E\A>,iPLE 2: Both operands positive; positive overflow. Standard result is nega- 0 1 0 0 1 0 0 1 0 0 1
tlve: Modified result is positive using S2 as sign of the answer. 0 1 0 1 1 0 0 1 0 1 1
Posltive overflow indicated by SI * %. 1 0 1 0 0 0 1 0 1 0 0

-i
EIAMPLE 3. Both operands negative; Sum negative, no overflow. End around 1 1 1 1 0 1 1 1 1 1 0

".

carry occurs. Identical results in both systems using either SI or Sz 1 1 1 0 0 1 1 1 1 0 0
as the sign of the answer. 1 1 0 1 0 1 1 1 0 1 0

1 carry 1 carry
1 1 0 1 1 1 1 1 0 1 1

. .- . ""

EXAMPLE 4: Both operands negative; negative overflow. Standard result is posi. 1 0 1 1 0 1 1 0 1 1 0
tive: modified result is negative using S2 as the sign of the answer. 1 0 1 0 0 1 1 0 1 0 0
Negative overflow indicated by st * S2. 0 1 0 1 0 1 0 1 0 1 0

1 carry 1 carry
0 1 0 1 1 1 0 1 0 1 1

EXAhlPLE 5: Operands have opposite sign; Sum positive. Identical results i:? both 1 1 1 1 0 1 1 1 1 1 0
systems. 0 0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1

. _

1 carry 1 carry
0 0 0 1 0 0 0 0 0 1 0

. -
EXA?.lPLE 6: Operands have opposite sign: sum negative. Identical results in 1 1 1 0 0 1 1 1 1 0 0

both systems. 0 0 0 0 1 0 0 0 0 0 1
1 1 1 0 1 1 1 1 ' 1 0 1

Flg. 2. Illustrative example of properties of modified one's complement system.

representation in which the sign bits of all component words agree.
The method used in the AGC allows the signs of the components
to be different.

Independent signs arise naturally in mrlltiple-precisioll addition
and srd)traction, and the identical sign representation is costly
becarlse sign reconciliation is recpired after every operation. For
example, (+6, +-I) + (- 4, - 6) = (+2 , -3. a mixed sign repre-
sentation of (+ 1 , +8). Since addition and subtruction are the most
frequent operations, it is econornicai to store the resnlt as it ot'cIIrs
and reconcile signs only when necessary. \\'hen overflow occltrs
in the addition of two components, a o n (' \vith the sign o f the
overflow is carried to the acltlition of the nest highcr conlponc*tjts.
The SIII I I that overllowerl ret;tiws the sign o f its t)per:uds. This
ovcrlIo\v is ternled it11 intc+)rc t o distinguish i t t ' r o ~ ~ ~ i111 o ~ r l l o \ v

152 Part 2 1 The instruction-set processor: main-line computers

t11:tt ; ~ ~ i . ; c ~ ~ wiltql the n 1 ; n i l l l l l l l l ~ ~ ~ ~ ~ l t i ~) l ~ - ~) r e c i s i o ~ l I I I I I I I I) ~ ~ is cs-
cc~crltd.

Thc i~ l t fepc~~l l le~~t s i p 111et11od has a pitfdl arising from the fact
thiat e\.c~.!. n1111ll1er has t u o representations, either one of nvhich
I11:tv occI(r its :a sun1. There are so~ne nunhers for which one of
the representiations esceeds the capacity of the most significant
coqol ren t . The overflow is false in the sense that the double-
prc.cisiol1 capc i ty is not esceeded, only the single word capacity
of the 11pper component. Sign reconciliation can be used in this
case t o \ , i c l d :in acceptal)le representation. This prol)lern can be
avoidecl i f a l l nunhers are scaled so that none are large enough
to protluce false overflows. Such a restriction is not necessary,
hotvever, since the false overflow condition arises infrequently and
can be detected at no expense in time. The net cost of reconcilia-
tion is therefore very low.

iWtItiplication and division

For triple and higher orders of precision, multiplication and divi-
sion become excessively complex, unlike addition and subtraction
where the complexity is only linear with the order of precision.

The algorithm for double-precision multiplication is dire&y
applicable to numbers in the independent sign notation. False
overflow does not arise, and the treatment of interflow is simplified
by an automatic counter register which is incremented when
overflow occurs during an add instruction. The sign of the counter
increment is the same as the sign of the overflow; and the incre-
ment takes place while one of the product components of next
higher order is stored in that counter.

Double-precision division is exceptional in that the independ-
ent sign notation may not be used; both operands must be made
positive in identical sign form, and the divisor normalized so that
the left-most nonsign bit is one.

Triple prccision

:I fe\v triple-precision quantities are used in the .iCC. These are
added and stlbtracted Itsing independent sign notation with inter-
flo\v and overflow features the Same as those used for double-
prccision arithmetic.

Section 1 1 Processors with one address per instruction

2 Storing in wetnor>

3 Negating (cornl’lellrelrtillS)

-! Combining two opermds (e.g.. adtlitioni

5 Address modification (more generally, cwcutiug as an in-
struction the result of arithmetic processing)

6 Normal sequencing (to each location from which an instruc-
tion can be executed there correspo~~ds OW location whose
contents are the nest instruction)

7 Conditional sequence changing, or transfcr of control

8 Input

9 Output

.4n instruction can, of course, provide scvclR1 of ~lrcse facilities.
For instance, some computers have an instruction that subtracts
the contents of a memory location from an acrmmulaic~r and leaves
the result in that memory location and in the. ~ w w n v b t o r ; this
instruction fulfills all of requirements 1.4 a1)w-c:. 1tcquil:cment 5
is met in a somewhat primitive manner if inst>uctions can be
executed from erasable memory, and is met clcgantly by the use
of index registers. Still another scheme, somcwhat similar to one
used in the Bendix G-20, is employed in the AGC. Requirement
6 is usually fulfilled by having an instruction location counter
which contains the address of the next instruction to be executed,
and is incremented by one when an instruction is fetched. Alter-
natively, each instruction may include the adchess of the next
instruction, as is often done in machines having drum memories.
In the AGC, as in most short-word computexs, the former method,
with one single-address instruction per word, is clearly the simplest
and cheapest. Requirement 7 is generally met by eramining a
condition such as the s i p of an accumulator and , if tllc condition
is satisfied, either incrementing the instruction lo~a l ion counter
(skipping). or using an address included in tllc ills11 uc-lion as that
of the next instruction (conditional transfer of rontlol). An uncon-
ditional transfer of control is usual b u t not ncwssary, since any
desired condition can be forced. !dost mwlrincs have special
input-output instructions to satisfy requirewents S and 9. I n the
:\C,C. ho\vever, since input and outptt is th1o[1$ iddressable
registers. inplrt is sul)snmed under fetching from lnenlory, and
ontput under storing in memory. Counter incrementing and pro-
p u n interruptiou aid these fwctions nlso.

Further critcrio

The majo r goals i n the ACC: were cfficicwt usr o f Incnlory. reason-
d)Ie speetl o f colnputing. potenti;d fo r cIeg:mt prog:’”Inming, effi-

Chapter 7 I Some aspects of the logical design of a control computer: a case study 153

c , i c s l l t Illllltiplc precision arithllwtic. efficient processing of i n p l t

;111tl o t l t p t . and rensonal)le silllplicity o f the sequence generator.
The constraints affecting the order code as a whole were the word
Iellgth. one‘s complement notation, parallel data transfer, and the
cllaractrristics of the editing registers. The ground ndes governing
the choice of instntctions arose from these goals and constraints.

(1 Three bits of an instruction word are devoted to operation
code.

11 .iddress modification must be convenient and efficient.

c There should be a multiply instruction yielding a double
length product.

d Treatment of overflow 011 addition must be flexible.

e -4 Boolean combinatorial operation should be available.

f XO instruction need be devoted to input, output, or shifting.

This list is by no means complete, but gives a good indication of
what kind of computer the AGC has to be. In the following para-
graphs the ways in which the instructions fulfill the above require-
ments are described.

Details of the instruction set

In the listing that follows, L denotes the location of the instruction;
K denotes the data address contained in the instruction. Paren-
theses mean “content of,” and the leftward arrow means that the
register named at the arrowhead is set to the quantity named to
the right.

L: TC K ; Transfer Control
Q e- L + 1; go to R.
This is the primary method of transferring control to any stated

location, and thus meets part of requirement 7. The setting of the
return address register Q renders complex subroutines feasible. T C
(1 ma!’ be used to return from a sdxorttine (with no other TC’s)
Iwcause the binary ntlmber “ L + 1” is the same as the binary word
“TC L + 1,” by virtue of the TC code being all zeros. TC A
1)chaves like an “execute” instruction, executing whatever instruc-
t i o n i s in A, because @ follows A in the address pattern. see
Td)le 1.

I,: CCS K : Cortnt, Cotnpmv, and S k i p
I f i l i) > +0, ;I + (Ki) - 1. no skip: if (K) = $0. A +- +O. skip
t o 1, + 7; if (K) < -0. A - 1 - (K) . skip to I, + 3 : i f (l i) =
-0, A c +O, skip to I, + 1.
This instrllction flllfills the remainder of rcclllircment 7 und

~) r ~ ~ v i t l e s wveral fcat~~res . I t is clear that i n il mnchitlc. tvith :I :3-l)it

operation code thcre s h o ~ ~ l d I w o n l y one cotlc devoted entirely t o
Imnching. if at a l l possible. I t is inefficient to program a zero test
using onl!. a sign-testing code: i t is even more inefficient to pro-
gram a sign test using only a zero-testing code. This instruction
was therefore designed to test both types of conditions simultane-
o d y . It has to be a four-way branch, and since there is only one
address per instn~ction, it follows that CCS must be a skipping-
type branch.

The hmction of (K) delivered to A is the diminished absolute
value (D.-\BS). It serves two primary purposes: to do most of the
work in generating an absolute value, and to apply a negative
increment to the contents of a loop-counting register, so that CCS
has some of the properties of T I S in the IBM 704.

L: IXDEX E(; Index using K
Use (L + 1) + (K) as the next instruction.
In a short-word machine where there is no room in the instruc-

tion word to specify indexing or indirect addressing, this code
meets requirement 5 in a way far superior to forming an instruction
and placing it in A or in erasable memory for execution. INDEX
operates on whole words, so that the operation code as well as
the address may be modified. It may be used recursively (consider
the implications of several INDEX’S in succession, assuming that
no operation codes are modified). Finally, it permits more than
8 operation codes to be specified in 3 bits, since overflow of the
indexing addition is detectable.

L: SCH R; Exchange

This instruction meets requirements 1, 2, and 8. When K is
in fixed memory, it is simply a data-fetching (clear and add) code.
Its use with erasable memory aids efficiency by reducing the need
for temporary storage. XCH is also an important input instruction
in a machine where addressable counters, incremented in response
to external events, are an input medium, because a counter can
be read out and reset (to zero or any desired valrte) by SCH with
no chance of missing a count.

L: CS K ; Clear anti Srtbtruct
A c - (K) .
CS is the primary means of sip-changing and logical negation.

and so fulfills requirements I and G . Since there is no clear and
add instruction, it is the usual operation for nondestn~ctive re;dout
of erasable memory in simple data transfers. that is. when 110

addition or other arithmetic is required. Usually the progralnminc
can be arranged so that complementing thlring transfer is acc<*pt-
able; otherwise the CS can Ile followed b y CS :\ before Storill<.

L: TS R; ’li,rnsfcr t o Stornfc’
t i f (,.I) incllltles o v e r h v . ;\ + = I . skip I o I , + 2.

154 Part 2 1 The instruction.set processor: main-line computers Section 1 1 Processors with one address per instruction

clude the property of skipping on overllow, althottgh it did have
properties which aided mdi r rg .

After the design of MOD .3C was completed, it was discovered
th;lt the INDEX instruction codd be used to expand the instruc-
tion set beyond eight instructions I)y producing overflow in the
instruction word following the INDEX. For example, the addition
of oc td 47777 to the instruction word "CS K" in the course of
an INDEX instruction will cause negative overflow, producing bIP
K . a multiply instruction with operand address K .

In order to implement the extracodes in the AGC, it was
necessary to provide a path from the high-order 4 bits of the adder
to the unaddressable sequence selection register SQ. Part of this
path is the unaddressable buffer register B ; these requirements
helped to suggest the benefits of retaining two sign bit positions
in all the central registers.

In principle, eight additional instruction codes can be obtained
by causing overflow, but we did not feel obliged to use them all.
Because every extracode must be indexed, the instructions chosen
for this class had two properties to some degree: they are normally
indexed, or they take long enough so that the cost of indexing
without address modification is small. All the extracodes are com-
binatorial, and therefore relate to requirement 4.

L: MP K ; Multiply
A t upper part, LP c lower part, of (A) * (K) ; the two words

of the product agree in sign, which is determined strictly by the
sign bits of the operands.

Experience with MOD 3C showed that it was worthwhile
making a completely algebraic, self-contained multiply instruction,
especially in doing double-precision multiplication whose oper-
ands have independent signs. The AGC multiply is much faster
than that of MOD 3C, being limited by adder carry propagation
time rather than core-switching time.

L: DV K ; Dicide
A t qrtotient, Q c - I remainder\, of (A) / (K) ; LP c nonzero
nuln1)er with the sign of the quotient.
Many facets of AGC design originally adopted for other reasons

combined to make a divide instrnction inexpensive. The foremost
of these is the nature of the editing registers, which are in the
standard crasulde memory and have no special wiring. The special
properties of these registers are supplied by a shift or cycle of the
word being written into the memory local register G, when the
address o f an editing register is selected. The central loop of DV
selects sllch an address ant1 in1lil)its Inellwry operations. so that
all the left shifts recllliretl i n division are accon~plishecl in the C
register while thc ctlitiyg rrgistcsr itself ren1;rins ttnchmgetl. The
rllicroprograr~~I~lec1 Iraturc o f orclcr constrllctioll ~nakes a restoring

D Chapter 7 I Some aspects of the logical design of a control computer: a case study 155

B

D

. ~ l < o v i t 1 1 1 1 1 nwre cffic.ityIt th;ul ;I n o ~ ~ r e ~ t o r i n g one. The cplotient
c[l~li\~crcd to ;\ has s i p d e t e r ~ ~ ~ i n e t l accorcling to n o r n d algebraic
rl1lt.s \)y the s i p s of (-4) and (K): the same sign is available in LP
to ;lid i n determining the correct sign of the remainder from those
,,(thr clivisor and quotient in c u e the quotient has been al)sorbed
1 1 , s(1l)sequent processing. D\; is not usuall; indexed, but it pays
, I l c . h large benefits in space and time, especially in doulde-pre-
L , ~ \ i o ~ ~ division. that the cost of extracode indexing is negligihle.
11 t l w tli\isor is less in magnitude than the dividend, or is zero,
t l l c q ~ ~ o t i e n t has correct sign and, in general, maximum magnitude.
~o infinite loop results in any case.

Id: SI’ 6; Srrbtrtlct
.I +(&I) - (K) ; if the final (A) includes & overflow,

The primary justification for this instruction is that it allows
multiple-precision addition subroutines to be changed into multi-
ple-precision subtract subroutines merely by changing the indexing
quantity. There are occasions in the middle of involved calcula-
tious where it is clumsy to construct a subtraction out of comple-
mentations and additions, especially when the sign of an overflow
is of interest. Since SU differs from AD only in that the operand
from memory is read out of the complement side of the buffer
register B rather than the direct side, its cost is virtually zero.
This last is not necessarily true when using core-transistor logic,
or two‘s complement notation.

O\,*CTR t (OVCTR) 21.

7. Expansion of memory addressing

The AGC’s 12-bit address field is insufficient for specifying directly
all the registers in its memory. This predicament seems increas-
ingly to afflict most computers, either because indirect addressing
is assumed as a necessary evil from the start or, as was our case,
I)ecause our earliest estimates of memory requirements were wrong
I)? a factor of two or three. The method of indirect addressing
\rc arrived at uses a bank register MB, but with an important
~nodification: the 3-bit number stored in SIB has no effect unless
the atldress is i n the range (octal) 6000 to 7 7 X . The LIB register
vontents are not interpreted as higher-order bits of the address;
the!. are interpreted as integers which specify which I)ank of 1024
\ ~ o r d s is meant i n the event of the address part of the instruction
h n q in the aml)iguous range. The over-all map of rnelnory is
\ho\\.n in Table 2. The u1lalnbigllorls. fised memory addresses
(I o n l a i u has co~ne to be k n o w n as “fisccl-fised.”

I t is interesting that this methot] o f extending the iddressing
cq~11)iIity was not the result of trying to inaprove 1 t p o 1 1 wore
c (~ l~ \ .cwt io~~aI ~nctlaods, b u t \vas ahlost coIIse(penct~ o f the phys-

Table 2 Address part of an instruction word

(Dccimul)

0-3071 Fixed and erasable memory: unambiguous addresses.
3072-4095 Fixed memory, ambiguous address. Contents of MB

used to resolve the ambiguity. Up to 32 such banks
are possible.

ical difference between fixed and erasable memory. Since all data
other than constants are concentrated in the erasable memory,
these had to be exempt from modification by the MB register. h n
alternative arrangement, whereby only .the addresses of instruc-
tions (as opposed to the addresses within an instruction word) are
modified, would be deficient in that it would allow only instruc-
tions to be stored in banks; there would be no way to refer to
constants stored in banks, or to use bank addresses to store a r y -
ments of arithmetic operations. The possibility of using two bank
registers is worthy of serious consideration [Casale, 19621, but it
did not occur to us.

In addition to the addresses in erasable, it is necessary to
exempt the addresses of interrupting programs (i.e., the addresses
to which a program interrupt transfers control) from the influence
of the MB register. It was clear that it would be valuable to have
a large body of unambiguous addresses for use in executive and
dispatcher programs.

The most frequent and critical applications of bank changing
are in the ..\GC’s interpretive mode. Most of the programs relevant
to navigation are written in a parenthesis-free pseudocode notation
for economy of storage. An interpretive program executes these
pseudocode program by performing the indicated data accesses
and subroutine linkages,

The format of the notation permits two macrooperators (e.g.,
“double-precision vector dot product”) or one data address to be
stored in one hGC word. Thus data addresses appear as fill1 15-bit
words, potentially capable of addressing up to -32.768 registers.
Each such address is examined in the interpreter and the contents
of the bank register are changed if necessary; preparation is ulso
made for sul~sequent return if ;I subroutine call is lwing made.

The structure of the interpretive program, and its relationship
to the computer characteristics discussed in this paper will not
be taken up here except to point out that parenthesih-free notation
is partictli;dy vaIt1d11e i n a short-word computer s11c.11 as the :\CC.
It permits a very slhstantiul espnsion of the address and pseudo-
operation fields witlmtt x;ac.rificing efficiency in program storage
[hluntx. 1 !) (2] .

I 156 Part 2 1 The instruction-set processor: main-line computers

The conversion of a 15-11it address into ;I bank nrltnber and ;UI

anI1)igyous 12-I)it address is as follows: the top 5 bits correspond
dirrctl!, to the desired Ixunk number. The remaining lower-order
1 0 bits. logicully added to octal 6000. form the proper ambigrtotts
address. If the 15-bit address is less than octal 6(H)0, however. the
atldress is i n er;lsalde or fixed-fixed nw~nory. In this case the logical
additiou o f octal 6000 is suppressed.

It is possilde to have a prograln in one bank call a closed
sd)routine in another bank, and then have control returned to the
proper place i n the bank of origin. This is done by means of a
short bank switching routine which is in fixed-fised memory.

One potential awkwardness about this method of extending

-

Section 1 I Processors with one address per instruction

nlelnory addresses is the possil)le requirement for a routine in one
bank to have access to large amounts of data stored in another.
There are many programming solutions to this problem. obviously
at a cost in operating speed: a better solution would be to have
t\vo bank registers. No problems of this nature have yet material-
ized. however.

References
.\lonR63; AlonR60: hlonR61: AIonR62: ReckF61; CasaC62; EngILV62:

Hopkh63; MwtC6.7; RichR35: \\'ale\V62; Proc. Conf. Spuceborne Cma-
ptrter Eng.; Anaheim, Calif., Oct. 30-31, 1962.

APPENDIX 1 BACKGROUND FOR AGC DESIGN

Same, Memory size
date (F = fixed h'umber Number of Purpose Features incorporated.
completed E = erasable) of M t s instrlrctions of design at this stage

MOD 1 , F:448 11 and parity 4 plus involuntary Feasibility Prototype Counter increments,
1960 E: 64 Interrupts,

Core-Transistor Logic,
Pulse rate outputs,
Editing registers,
Wired-in fixed memory,
Interpretive programs.

MOD 2, about 4000 total 23 and parity 16 plus indirect
not built

MOD 3s. F 3584 15 and parity 8
1962 E: 512

Unmanned Space Probe "Extended Operation" subroutine
linkages (only instance).

Earth Satellite Modified one's complement,
Parallel adder,
Addressable central registers.

CCS, INDEX. MULTIPLY in.
structions.

Overflow counter,
Bank switchmg.

AGC. F: greater than 10' 15 and parity 1 1 and involuntary Apollo Guidance
1963 E: greater than 10:'

DV, SU. MSK instructions.
Editing memory buffer.
All transistor NOR logic instead of

core.transistor logic,
Extracodes.
Parenthesls.free interpreter.

