146

Chapter 7

Some aspects of the logical design of
a control computer: a case study!

R. L. Alonso * H. Blair-Smith / A. L. Hopkins

Summary Some logical aspects of a digital computer for a space vehicle
are described. and the evolution of its logical design is traced. The intended
application and the characteristics of the computer's ancestry forns a frame-
work for the design, which is filled in by accumulation of the many decisions
made by its designers. This paper deals with the choice of word length,
number system. instruction set, memory addressing, and problems of multi-
ple precision arithmetic.

‘The computer is a parallel, single address machine with more than
10,000 words of 16 bits. Such a short word length yields advantages of
efficient storage and speed, but at a cost of logical complexity in connection
with addressing. instruction selection, and multiple-precision arithmetic.

1. Introduction

In this paper we attempt to record the reasoning that led us to
certain choices in the logical design of the Apollo Guidance Com-
puter (AGC). The AGC is an onboard computer for one of the
forthcoming manned space projects, a fact which is relevant pri-
marily because it puts ahigh premium on economy and modularity
of equipment, and results in much specialized input and output
ciceuitry. The AGC, however, was designed in the tradition of
parallel, single-address general-purpose computers, and thus has
many properties familiar to computer designers [Richards, 1935],
[Beckman et al,, 1961]. We will describe some of the problems
of designing a short word length computer, and the way in which
the word length influenced some of its characteristics. These
characteristics are number system, addressing system, order code,
and multiple precision arithmetic.

. A secondary purpose for this paper is to indicate the role of
evolution in the AGC's design. Several smaller computers with
abont the same structure had been designed previouslv. One of
these. MOD 3C. was to have been the Apollo Guidance Computer,
but a decision to change the means of electrical implementation
(from core-transistors to integrated circuits) afforded the logical
designers an nnnsual second chance,

[t is our belief. as practitioners 0f logical desiem, that designers,
compnters and their applications evolve in time: that a frequent

YIEEE Trans. FC-12 6, 657697 December, 1963

reason for a given choice is that it is the same as, or the logical
nest step to, a choice that was made once before.

A recent conference on airborne computers [Proc.Conf. Space-
borne Computer Eng., Anaheim, Calif., Oct. 30-31, 1962] affords
a view of how other designers treated two specific problems: word
length and number system. All of these computers have word
lengths of the order of 22 to 28 bits, and use a two's complement
system. The AGC stands in contrast in these two respects, and
our reasons for choosing as we did may ‘therefore be of interest
as a minority view.

2. Description of the AGC

The AGC has three principal sections. The first is a memory, the
fixed (read only) portion of which has 24,376 words, and the
erasable portion of which has 1024 words. The next section may
be called the central section; it includes, besides an adder and a
parity computing register, an instruction decoder {SQ), a memory
address decoder (S), and a number of addressable registers with
either special features or special use. The third section is the
sequence generator which includes a portion for generating various
microprograms and a portion for processing various interrupting
requests.

The backbone of the AGC is the set of 16 write busses: these
are the means for transferring information between the various
registers shown in Fig. 1. The arrowheads to and from the various
registers show the possible directions of information flow.

In Fig. 1, the data paths are shown as solid lines: the control
paths are shown as broken lines.

Memory: fixed and erasable

The Fixed Memory is made of wired-in “ropes” [Alonso and
Laning, 1960], which are compact and reliable devices. The num-
ber of bits so wired is about 4 X 10%. The cvcele time is 12 psec.

The erasable memory is a coincident current system with the
same cyele time as the fixed memory. Tustructions can address
registers in either memory, and can be stored in either memory.

Chapter 7

MEMORY ~A0ORESS ______!_*________
REGISTER
) 0 | |
MEMORY BANK [#—si 72 |
REGISTER q |
PRIORITY_CKTS = | |
— | INTERRUPT PRIORITY W | |
COUNTER INCREMENT ADDRESSABLE A &
PRIORITY CENTRAL Q 2 | |
REGiSTERS £ 5
_1__t ' tTN--_ MEMRonv LOCAL |
: SCQUENCE out EGISTER o —4
CLOCK SEQUENCE. — FIXED MEMORY }:____1
L —=—a== ERASABLE MEMORY
O™ [T | nsTRUCTION A l
TIMING PULSES MICROBBCGRAM ARITHMETIC uNiT ! |
| ADOCR |
I PARITY |
L _] memory |
TIMING - -l — 50 |
— 1 iNsTRUCTION |
: | DECODE
|

‘ -~ = Control paths —Data paths

fig. 1. AGC block diagram.

The only logical difference between the two memories is the
inability to change the contents of the fixed part by program steps.

Each word in memory is 16 bits long (15 data bits and an odd
parity bith, Data words are stored as signed 14 bit words using
a one’s complement convention. Instruction words consist of 3
order code bits and 12 address code bits.

The voateats of the address register S uniquely determine the
address of the memory word only if the address lies between octal
0 and octal 3777, inclusive. If the address lies between octal
XX and octal 7777, inclusive, the address in S is modified by the
contents of the memory bank register MB. The modification con-
ats in adding some integral multiplies of octal 2000 to the address
m Shefore it is interpreted by the decoding circuitry. The memory
hank redister MB is itself addressable; its address, however, is not
madified Tw its own contents.

Transfers in and out of memory are made by way of a memary
lncal register (G, For certain specific addresses, the word being
transferred into (2 s not sent directly, but is modified by a special
Satmg network. The transformations on the word sent to G are
nzht shift, left shift. right cvele, and left cvcle. ‘

Central section

Themiddle part of Fig. I shows the central section in block form.

1t

ansists of the address vegister S and the memory bank register

ME both of which were mentioned above. There is also a block
of addressable registers called *"central and special registers,"
which will be discussed later, an arithmetic unit, and an instruc-
tion decoder register SQ.

The arithmetic unit has a parity generating register and an
adder. These two registers are not explicitly addressable.

The SQ register bears the same relation to instructions as the
S register bears to memory locations; neither S nor SQ are ex-
plicitly addressable.

The central and special registers are A, Q, Z, LP, and a set of
input and output registers. Their properties are shown in Table 1.

Sequence generator

The sequence generator provides the basic memory timing, the
sequences of control pulses (microprograms) which constitute an
instruction, the priority interrupt circuitry, and a number of scal-
ing networks which provide various pulse frequencies used by the
computer and the rest of the navigation system.

Instructions are arranged so as to last an integral number of
memory cycles. The list of 11 instructions is treated in detail in
Sec. 6. In addition to these there are a number 0f “involuntary”
sequences, not under normal program control. which may break
into the normal sequence 0f instructions; these are triggered either
by external events, or by certain overflows within the AGC, and

Some aspects of the logical design of a control computer: a case study 147

ERW PRI

148 Part 2 [The instruction-set processor: main-line computers

Table 1 Speciai and central registers

Qctal

Register(x) address Purpose and or properties

Central accumulator. Most instructions refer
to A.

A 0000

Q 0001 If a transfer of control (TC) occurred at L,

=L+ 1
7 0002 Program counter. Contains I. + 1, where L
is the address of the instruction presently
being executed.
P 0003 Low product register. This register modifies
words written into it by shifting them in a
special way.

IN e Several registers which arc used for sampling
either external lines. or internal computer
conditions such as time or alarms.

ouT c Several output registers whose bits control
switches, networks, and displays.

may be divided into two categories: counter incrementing and
program interruption.

Counter incrementing may take place between any two mem-
ory cycles. External requests for incrementing a counter are stored
in a counter priority circuit. At the end of every memory cycle
a test is made to see if any incrementing requests exist. If not,
the nest normal memory cycle is esecuted directly, with no time
between cycles. If a request is present, an incrementing memory
cycle is executed. Each “counter” is a specific location in erasable
memory. The incrementing cycle consists of reading out the word
stored in the counter register, incrementing it (positively or nega-
tively), or shifting it, and storing the results back in the register
of origin. Al outstanding counter incrementing requests are proc-
essed before proceeding to the nest normal memory cycle. This
type of interrupt provides for asynchronous incremental or serial
entry of information into the working erasable memory. The pro-
aram steps may refer directly to a “counter” to obtain the desired
information and do not have to refer to input buffers. Overflows
from one counter may he used as the input to another. A further
property of this system is that the time available for normal pro-
gram steps is reduced linearly by the amount of counter activity
present at any given time.

Program interruption occurs bhetween normal program steps

Section 1 | Processors with one address per instructio

rather than between memory cycles. An interruption cousists o
storing the contents of the program counter and transferring con
trol to a fixed location. Each interrupt line has a different locatior
associated with it. Interrupting programs may not be interrupted
but interrupt requests are not lost, and are processed as soon u
the earlier interrupted program is resumed. Culling the resum:
sequence. which restores the program counter. is initiated by
referencing a special address.

3. Wod length

In an airborne computer, granted the initial choice of parallel
transfer of words within it, it is highly desirable to minimize the
word length. This is because memory sense amplifiers, being high-
gain class A amplifiers, are considerably harder to operate with
wide margins (of temperature, voltages, input signal) than, say,
the circuits made up of NOR gates. It is best to have as few of
these as possible. Furthermore, the number of ferrite-plane inhibit
drivers equals the number of bits in a word in this case. Similarly,
the time required for a carry to propagate in a parallel adder is
proportional to the word length, and in the present case, this factor
couldbe expected to affectthe microprogram-ning of instructions.
The initial intent, then, was to have as short a word length as
possible.

Another initial choice is that the AGC should be a “common
storage” machine, which means that instructions may be executed
from erasable memory as well as from fixed memory, and that data
(obviously constants, in the case of fixed memory) may be stored
in either memory. This in turn means that the word sizes of both
types of memory must be compatible in some sense;,for the AGC,
the easiest form of compatibility is to have equal word lengths.
So-called “separate storage” solutions which allow different word
lengths for instructions and data can be made to work [Walend-
ziewicz, 1962] but they have a drawback in that three memories
are then required: a data memory (erasable),and two fised memo-
ries, one for instructions and one for constants. In addition, we
have found that separate storage machines are more awkward to
program, and use memory less efficiently. than comunon storage
machines.

There are three principal factors in the choice of word length.
These are:

I Precision desired in the representation of navigational vari-
ables.

T

Range of the input variables which are entered serially and
counted.

’

s fstruction word format. Division of instruction words into
two lields, one for operation code and one for address.

A a start. the choice of word length (13 bits) for two previous
machines in this series was kept in mind as a satisfactory word
tength from the point of view of mechanization: i.e., the number
of setne amplifiers, inhibit drivers. the carry propagation time, ete.,
were all considered satistactory. The act of “choosing™ word length
really meant whether or not to alter the word length, at the time
o hanee from MOD 3C to the AGC, and in purticulur whether
to merease it. The influence of the three principal factors will be
tahen up in turn,

Precision of data words

The data words used in the AGC may be divided roughly into
twa classes: data words used in elaborate navigational computa-
tions, and data words used in the control of various appliances
i the svstem. Initial estimates of the precision required by the
fint class ranged from 27 to 32 bits, 0(10%%1). The second class
of variables could almost always be represented with 15 bits. The
fact that navigational variables require about twice the desired
15-hit word length means that there is not much advantage to
word sizes between 15 and 28 bits, as far as precision of represen-
tation of variables is concerned, because double-precision numbers
must be used in any event, Because of the doubly signed number
representation for double-precision words, the equivalent word
lencth is 29 bits (including sign), rather than 30, for a basic word
lenath of 15 Dbits.,

The initial estimates for the proportion of 13-bit vs 29-bit
quantities to be stored in both fixed and erasable memories indi-
cated the overwhelming preponderance of the former. It was also
estimated that a significant portion of the computing had to do
with control, telemetry and display activities, all of which can be
handled more economically with short words. A short word length
allows faster and more efficient use of erasable storage because
it reduces fractional word operations, such as packing and editing;
i alvo means a more efficient encoding of small integers.

Range of input cariables

Ve control compater, the AGC must make analog-to-digital
conversions, many of which are of shaft angles. Two principal

Aarms of conversion exist: one renders a whole number, the other

produces a train of pulses which must be counted to vield the
deared number, The latter tvpe of conversion is emploved by the
MGC ising the counter incrementing feature,

MWhen the number of bits of precision required is greater than
ol

wompniter’s word length, the effective length of the counter

Chapter 7

must be extended into a second register, cither by programmed
scanning of the counter register, or by using a second counter
register to receive the overflows of the first. Whether programmed
scanning is feasible depends largely on how frequently this scan-
ning must be done. The cost of using an extra counter register
is directly measured in terms of the priority circuit associated
with it.

In the AGC, the equipment saved by reducing the word length
below 15 bits would probably not match the additional expense
incurred in double-precision extension of many input variables.
The question is academic, however, since a lower bound on the

word length is effectively placed by the format of the instruction
word.

Instruction word format

An initial decision was made that instructions would consist of
an operation code and a single address. The straightforward
choices of packing one or two such instructions per word were
the only ones seriously considered, although other schemes, such
as packing one and a half instructions per word, are possible
[England, 19621. The previous computers MOD 3S and MOD 3C
had a 3-bit field for operation codes and a 12-bit field for addresses,
to accommodate their 8 instruction order codes and 4096 words
of memory. In the initial core-transistor version of the AGC (i.e..
MOD 3C), the 8 instruction order codes were in reality augmented

. by the various special registers provided, such as shift right, cycle

left, edit, so that a transfer in and out of one of these registers
would accomplish actions normally specified by the order code
(seeSec. 6) These registers were considered to be more economical
than the corresponding instruction decoding and control pulse
sequence generation. Hence the 3 bits assigned to the order code
were considered adequate, albeit not generous. Furthermore, as
will be seen, it is possible to use an indexing instruction so as to
increase to eleven the number of explicit order codes provided
for.

The address field of 12 bits presented a different problem. At
the time of the design of MOD 3C we estimated that 4000 words
would satisfy the storage requirements. By the time of redesign
it was clear that the requirement was for 107 words, or more, and
the question then became whether the proposed estension of the
address field by a bank register (seeSec. 7} was more economical
than the addition of 2 bits to the word length. For reasons of
modularity of equipment. adding 2 more hits to the word length
would result in adding 2 more bits to all the central and special
registers. which amounts t o increasing the size 0f the nonmemory
portion of the AGC by 10 per cent.

Some aspects of the logical design of a control computer: a case study 149

Part 2 | The instruction-set processor: main-line computers

In summary. the 15-hit word length seemed practical enough
so that the additional cost of extra bits in terms of size, weight,
and reliability did not seem warranted. A 14-bit word length was
thought impractical because of the problems with certain input
variables, and it would further restrict the already somewhat
cramped instruction word format. Word lengths of 17 or 18 bits
would result in certain conceptual simplicities in the decoding
of instructions and addresses, but would not help in the represen-
tation of navigational variables. These require 28 bits, and so they
must be represented to double precision in any event.

4. Number representation
Signed numbers

In the absence of the need to represent numbers of both signs,
the discussion of number representation would not extend beyond
the fact that numbers in AGC are expressed to base two. But the
accommodation of both positive and negative numbers requires
that the logical designer choose among at least three possible forms
of binary arithmetic. These three principal alternatives are: (1)
one's complement, (2)two's complement, and (3) sign and magni-
tude [Richards. 1953).

In one's complement arithmetic, the sign of a number is re-
versed bv complementing every digit, and ""end around carry™" is
required in addition of two numbers.

In two's complement arithmetic, sign reversal is effected by
complementing each bit and adding a low order one, or some
equivalent operation.

Sign and magnitude representation is typically used where
direct human interrogation of memory is desired, as in ""post-
mortem™ memorv dumps. for example, The addition of numbers
of opposite sign requires either one's or two's complementation
or comparison of magnitude, and sometimes may use both. No
advantuge is offered in efficiency with the possible exception of
sign changing. which only requires changing the sign bit. A disad-
vantage s encendered in magnetic core logic machines by the
extra equipment needed for subtraction or conditional recomple-
mentation,

The one’s complement notation has the advantage of having
casy Sign reversal. which is equivalent to Boolean complementa-
tion: hence a single machine instruction performs both functions.
Zero is ambiguously represented by all zero’s and by all ows,
so that the number of numerical states in an n-hit word is 2* — 1.

Two's complement arithmetic s advantageous where end
around carry is diffienlt to mechanize. as s particularly true in

serial computers. An n-bit word has 2" states, which is desirable

Section 1 ! Processors with one address per instruction

for input conversions from such devices as pattern generators,
geared encoders, Or binarv scalers. Sign reversal i« avlward, how-
ever, since a full addition is required in the process.

The choice in the case of the AGC was to use one's compleiment
arithmetic in general processing. and two's complements for cer-
tain input angle conversions. Since the only arithmetic done in
the latter case is the addition of plus or minus one, the two's

_complement facility is provided simply by suppressing end around

carry and using the proper representation of minus one. The latter
is stored as a fixed constant. so that no sign reversal is required.

Modified one's complement system

In a standard one's complement adder, overflow is detected by
examining carries into and out of the sign position 'Thece overflow
indications must be ""caught on the fly'" and stored separately if
they are to be acted upon later. The number system adopted in
the ACC has the advantage of being a one's complement system
with the additional feature of having a static indication of over-
flow. The implementation of the method depencs on 'the AGC's
not using a parity bit in most central registers. Because of certain
modular advantages, 16, rather than 15, columns are available in-
all of the central registers, including the adder. Where the parity
bit is not required, the extrabit position is used as an extra column.
The virtue of the 16-bit adder is that the overflow of a 15-bit sum
is readily detectable upon examination of the two high order bits
of the sum (see Fig. 2). If both of these bits are the same, there
is no overflow. If they are different, overflow has occurred with
the sign of the highest order bit.

The interface between the 16-bitadder and the 15-bit memory
is arranged so that the sign bit of a word coming from memory
enters both of the two high order adder columns. These are de-
noted S, and S, since they both have the significance of sign bits.
When a word is transferred from the accumulator A to memory,
only one of these two signs can be stored. Our choice was to store
the S, bit, which is the standard one's complement sign except
in the event of overflow, in which case it is the sign of the two
operands. This preservation of sign on overflow is an important
asset in dealing with carries between component words of multi-
ple-precision numbers (see Sec. 3).

In a standard one's complement system. a series of additions
may result in subtotals which overflow. yet still produce a valid
sum solong as the total does not exceed the capacity of one word.
In a modified one's complement system. however. where sign is
preserved on overflow, this is no longer true; and the total mayv
depend on the order in which the numbers are added; this is not
a serious drawback, hut it must be accounted for in all phases
of logical design and programming,

Y R e

Chapter 7

Some aspects of the logical design of a control computer: a case study

STANDARD

MODIFIED
S 4 3 2 1 S« & 4 3 2 1 ‘
£\AMPLE 1. Both operands positive; Sum positive, no overflow. Identical resuts 0 0 0 0 1 0 0 0 0 0 1 [
in both systems. 0 0 0 1 1 0 0 0 0 1 1 ;
, 0 01 00 000 1 0 0
exaMPLE 20 Both operands positive; positive overflow. Standard result isnega- 0 1 0 0 1 0 01 0 0 1
tive; Modified result is positive using S: as sign of the answer. 0 1 0 1 1 0 01 0o 1 1 :
Positive overflow indicated by S; - Sa. 1 0 1 0 O 0 1 0 1 0 O
EXAMPLE 3. Both operands negative; Sum negative, no overflow. Endaround 1 1 1 1 0 11 1 1 1 0
carry occurs. Identical results in both systems using eitherS;ors; 1 1 1 0 0 1 1 1 1 0 O
as the sign o the answer. 1 1 0 1 0 1 1 1.0 1 0
1 carry 1 carry
1 1 0 1 1 11 1 0 1 1
EXAMPLE 4: Both operands negative; negative overflow. Standard result isposi- 1 0 1 1 0 11 0 1 1 0
tive: modified result is negative using S; as the sign oftheanswer. 1 0 1 0 O 11 0 1 0 O
Negative overflow indicated by 3; « Sa. 0 1 0 1 0 1 0 1.0 1 0
1 carry 1 carry
0 1 0 1 1 1 0 1 0 1 1
EXAMPLE 5: Operands have opposite sign; Sum positive. Identical resultsiz»both 1 1 1 1 0 11 1 1 1 0
systems. 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1
1 carry 1 carry
0O 0 0 1 O 0O 0O 0 0 1 O
EXAMPLE 6: Operands have opposite sign: sum negative. Identical results in 1 1 1 0 O 11 1 1 0 O
both systems. 0 0 1 0 0 0 0 0 1
1 1 1 0 1 1 1 1'1 0 1

Fig. 2. lllustrative example of properties of modified one's complement system.

5. Multiple precision arithmetic

\ short word computer can be effective only if the multiple-
preaiann routines are efficient corresponding to their share of the
computer’s word load. In the AGC's application there is enough
e for maltiple-precision arithmetic to warrant consideration in
*he chioice of number svstem and in the organization of the instruc-
fm set. Although the limited number of order codes prohibits
multiple-precision instructions, special features are associated with

[N P
Hie conventional instructions to expedite multiple-precision opera-
NI

Independent sipn representation
Vovanets of formats for multiple-precision representation are

posahle probably the most common of these is the identical sign

representation in which the sign bits of all component words agree.
The method used in the AGC allows the signs of the components
to be different.

Independent signsarise naturally in multiple-precision addition
and subtraction, and the identical sign representation is costly
because sign reconciliation is required after every operation. For
example, (+6, +4) + (— 4, - 6)= (+2, —2), amixed sign repre-
sentation of (+1, +8). Since addition und subtraction are the most
frequent operations, it is economical to store the result as it occurs
and reconcile signs only when necessary. \When overflow occurs
in the addition of two components, a one with the sign of the
overflow is carried to the acltlition of the next higher components.
The sum that overflowed retains the sign of its operands. This
overllow is termed an interflow to distinguish it from an overtlow

151

T HEY et v W

s 8 Do e

i sttt oo b

e o

N

PR N o e o o B FUISEY

e e v e

PRTTR—

152 Part 2 5 The instruction-set processor: main-line computers

that arises when the maximum multiple-precision number is ex-
ceeded.

The independent sign method has a pitfall arising from the fact
that every number has two representations, either one of which
mav occur as a sum. There are some numbers for which one of
the representations esceeds the capacity of the most significant
component. The overflow is false in the sense that the double-
precision capacity is not esceeded, only the single word capacity
of the upper component. Sign reconciliation can be used in this
cuse t0 vield an acceptable representation. This problem can be
avoided if all numbers are scaled so that none are large enough
to produce false overflows. Such a restriction is not necessary,
however, since the false overflow condition arises infrequently and
can be detected at no expense in time. The net cost of reconcilia-
tion is therefore very low.

Multiplication and division

For triple and higher orders of precision, multiplication and divi-
sion become excessively complex, unlike addition and subtraction
where the complexity is only linear with the order of precision.

The algorithm for double-precision multiplication is directly
applicable to numbers in the independent sign notation. False
overflow does not arise, and the treatment of interflow is simplified
by an automatic counter register which is incremented when
overflow occurs during an add instruction. The sign of the counter
increment is the same as the sign of the overflow; and the incre-
ment takes place while one of the product components of next
higher order is stored in that counter.

Double-precision division is exceptional in that the independ-
ent sign notation may not be used; both operands must be made
positive in identical sign form, and the divisor normalized so that
the left-most nonsign bit is one.

Triple prccision

A few triple-precision quantities are used in the AGC. These are
added and subtracted nsing independent sign notation with inter-

flow and overflow features the same as those used for double-
precision arithmetic.

6. Instruction set

Basic design criteria

The implicit requirements for any von Neumann-tvpe machine
demand that facilities exist for:

1 Fetching from memory

Section 1 | Processors with one address per instruction

2 Storing in wemory
3 Negating (complementing)
4 Combining two operands (e.g., addition)

5 Address modification (more generally, executing as an in-
struction the result of arithmetic processing)

6 Normal sequencingto each location from which an instruc-
tion can be executed there corresponds one location whose
contents are the nest instruction)

-1

Conditional sequence changing, or transfer of control
Input
Output

© 0o

An instruction can, of course, provide seveial of {)icse facilities.
For instance, some computers have an instruction that subtracts
the contents of a memory location from an accumulator and leaves
the result in that memory location and in the 2ecomwlator; this
instruction fulfills all of requirements 1.-4 above, Jteguivement 3
is met in a somewhat primitive manner if insbuctions can be
executed from erasable memory, and is met clegantly by the use
of index registers. Still another scheme, somewhat similar to one
used in the Bendix G-20, is employed in the AGC. Requirement
6 is usually fulfilled by having an instruction location counter
which contains the address of the next instruction to be executed,
and is incremented by one when an instruction is fetched. Alter-
natively, each instruction may include the address of the next
instruction, as is often done in machines having drum memories.
In the AGC, as in most short-word computers, the former method,
with one single-address instruction per word, is clearly the simplest
and cheapest. Requirement 7 is generally met by examining a
condition such as the s i p of an accumulator and, if the condition
is satisfied, either incrementing the instruction location counter
(skipping). or using an address included in the insbiaction as that
of the next instruction (conditional transfer of conirol). An uncon-
ditional transfer of control is usual but not necessary, since any
desired condition can be forced. Most machines have special
input-output instructions to satisfy requirements S and 9. In the
AGC, however, since input and output is through addressable
registers. input is subsumed under fetching from memory, and
output under storing in memory. Counter incrementing and pro-
gram interruption aid these functions also,

Further criteria

The major goals in the AGC were eficient use 0f memory, reason-
able speed 0f computing, potential for elegant programming, efii-

cient multiple precision arithinetic, efficient processing of input
and output. and reasonable simplicity of the sequence generator.
The constraints affecting the order code as a whole were the word
length. one‘scomplement notation, parallel data transfer, and the
characteristics of the editing registers. The ground rules governing
the choice of instructions arose from these goals and constraints.

« Three bits of an instruction word are devoted to operation
code.

b Address modification must be convenient and efficient.

¢ There should be a multiply instruction yielding a double
length product.

d Treatment of overflow on addition must be flexible.
e A Boolean combinatorial operation should be available.

f No instruction need be devoted to input, output, or shifting.

This list is by no means complete, but gives a good indication of
what kind of computer the AGC has to be. In the following para-
graphs the ways in which the instructions fulfill the above require-
ments are described.

Details of the instruction set

In the listing that follows, L denotes the location of the instruction;
K denotes the data address contained in the instruction. Paren-
theses mean “content of,” and the leftward arrow means that the
register named at the arrowhead is set to the quantity named to
the right.

L: TC K; Transfer Control

Q<L+ 1;gotoR.

This is the primary method of transferring control to any stated
location, and thus meets part of requirement 7. The setting of the
return address register Q renders complex subroutines feasible. TC
() may be used to return from a subroutine (with no other TC's)
hecause the binary number “L + 17 is the same as the binary word
“TC L + 1,” by virtue of the TC code being all zeros. TC A
behaves like an “execute” instruction, executing whatever instruc-
tion is in A, because Q follows A in the address pattern. see
Table 1.

L: CCS K; Count, Compare, and Skip

1f(K) > +0, A «— (K) —1.no skip: if (K) = +0.A — +0. skip

to L + 2 if (K) < =0, A1 —(K). skip to I. + 3:if (k) =

-0, A — +0, skip to L + 4.

This instruction fulfills the remainder of requirement 7 and
provides several features, It is clear that in a machine with a 3-bit

Chapter 7

operation code there should be only one code devoted entirely to
branching,. if at all possible. It is inefficient to program a zero test
using onlv a sign-testing code: it is even more inefficient to pro-
gram a sign test using only a zero-testing code. This instruction
was therefore designed to test both types of conditions simultane-
ously. It has to be a four-way branch, and since there is only one
address per instruction, it follows that CCS must be a skipping-
type branch.

The function of (K) delivered to A is the diminished absolute
value (DABS). It serves two primary purposes: to do most of the
work in generating an absolute value, and to apply a negative
increment to the contents of a loop-counting register, so that CCS
has some of the properties of TIS in the IBM 704.

L: INDEX K; Index using K

Use (L + 1)+ (K)as the next instruction.

In a short-word machine where there is no room in the instruc-
tion word to specify indexing or indirect addressing, this code
meets requirement 5 in away far superior to forming an instruction
and placing it in A or in erasable memory for execution. INDEX
operates on whole words, so that the operation code as well as
the address may be modified. It may be used recursively (consider
the implications of several INDEX's in succession, assuming that
no operation codes are modified). Finally, it permits more than
8 operation codes to be specified in 3 bits, since overflow of the
indexing addition is detectable.

L: XCH K; Exchange

This instruction meets requirements 1,2, and 8. When K is
in fixed memory, it is simply a data-fetching (clear and add) code.
Its use with erasable memory aids efficiency by reducing the need
for temporary storage. XCH is also an important input instruction
in a machine where addressable counters, incremented in response
to external events, are an input medium, because a counter can
be read out and reset (tozero or any desired value) by SCH with
no chance of missing a count.

L: CS K; Clear anti Subtract

A «— —(K).

CS is the primary means of sip-changingand logical negation,
and so fulfills requirements 1 and 3. Since there is no clear and
add instruction, it is the usual operation for nondestructive readout
of erasable memory in simple data transfers. that is. when no
addition or other arithmetic is required. Usually the programming
can be arranged so that complementing during transfer is accept-
able; otherwise the CS can be followed by CS A before storing.

L: TS K; Tvansfer to Storage

K — {A): if (V) includes = overflow, A — =1, skip to L. + 2.

Some aspects of the logical design of a control computer: a case study 153

154 Part 2 ; The instruction.set processor: main-line computers

This instruction is the primary means of transfers to mewory
and output. satisfving requirements 2 and 9. It is also the most
convenient method of testing for overflow. Since A and the other
central registers have two sign positions. overflow indication is
retained in a central register. TS alwavs stores (A) and tests
whether overflow is present. If K is in erasable memoryv and is
not a central register, the lower-order sign bit §; is not transmitted:
this is the process of overflow correction. If positive overflow
indication is present in A, TS skips over the next instruction and
sets A «— +1 (+1 denotes octal 000001); if negative overflow is
present. TS skips over the next instruction and sets A « —1 (-1

denotes octal 177776); otherwise (A) are unchanged. The sequence

TS K
XCH ZERO (ZERO in fixed memory)

- suffices to store in K an overflow-corrected word of a multiple-
precision sum and leave in A the interflow to the next higher-order
part. TS A skips if either type of overflow is present, but leaves
all 16 bits of (A) unchanged;, o . o272

Finally, a computed transfer of control may be achieved by
TS Z because Z is the program counter; only the low-order 12
bits of (A) are significant, being the address of the instruction to
which control is transferred. Overflow in (A) in this case does not
affect the transfer but sets A « *=1.

L: AD K; Add

Ae—(A) + (K); if the final (4)

OVCTR « (OVCTR) =1.

Addition is the most frequently used combinatorial operation
(requirement 4), The property of OVCTR is used chiefly in devel-
oping double-precision products and quotients, partly because the
additions in these processes are less susceptible to false overflow
than are multiple-precision additions.

L: MASK K; Mask

A —{\) N (K).

This is the only combinatorial Boolean instruction, and may
be used with CS to generate any Boolean function.

includes == overflow,

Extracodes

The AGC instruction set was carried over in large part from its
ancestor. MOD 3C [Alonso et al., 1961]. All instructions of MOD
3C were retained in the AGC, modifications and additions being
adopted where a substantial increase in computing power could
be obtained at small cost. The MOD 3C instruction set was like
the one described above for the AGC with two major exceptions:
first. instead of a mask instruction, MOD 3C had a multiply in-
struction. Second, the transfer to storage instruction did not in-

Section 1 ; Processors with one address per instruction

clude the property of skipping on overflow, although it did have
properties which aided masking.

After the design of MOD 3C was completed, it was discovered
that the INDEX instruction could be used to expand the instruc-
tion set beyond eight instructions by producing overflow in the
instruction word following the INDEX. For example, the addition
of octal 47777 to the instruction word ""CS K" in the course of
an INDEX instruction will cause negative overflow, producing MP
K. a multiply instruction with operand address K.

In order to implement the extracodes in the AGC, it was
necessary to provide a path from the high-order 4 bits of the adder
to the unaddressable sequence selection register SQ. Part of this
path is the unaddressable buffer register B; these requirements
helped to suggest the benefits of retaining two sign bit positions
in all the central registers.

In principle, eight additional instruction codes can be obtained
by causing overflow, but we did not feel obliged to use them all.
Because every extracode must be indexed, the instructions chosen
for this class had two properties to some degree: they are normally
indexed, or they take long enough so that the cost of indexing
without address modification is small. All the extracodes are com-
binatorial, and therefore relate to requirement 4.

L: MP K; Multiply

A « upper part, LP « lower part, of (A)* (K);the two words
of the product agree in sign, which is determined strictly by the
sign bits of the operands.

Experience with MOD 3C showed that it was worthwhile
making acompletely algebraic, self-contained multiply instruction,
especially in doing double-precision multiplication whose oper-
ands have independent signs. The AGC multiply is much faster
than that of MOD 3C, being limited by adder carry propagation
time rather than core-switching time.

L: DV K; Divide

A « quotient, Q « —|remainder|, of (A)/(K); LP < nonzero

number with the sign of the quotient.

Many facets of AGC design originally adopted for other reasons
combined to make a divide instrnction inexpensive. The foremost
of these is the nature of the editing registers, which are in the
standard crasable memory and have no special wiring. The special
properties of these registers are supplied by a shift or cycle of the
word being written into the memory local register G, when the
address of an editing register is selected. The central loop of DV
selects such an address and inhibits memory operations. so that
all the left shifts required in division are accomplished in the G
register while the editing register itself remains unchanged. The
microprogrammed nature 0f order construction makes a restoring

aleorithim more efficient than o nonrestoring one. The quotient
delivered t0.4 has a sign determined according to normal algebraic
rules by the signs of (A) and (K): the same sign is available in LP
to aid in determining the correct sign of the remainder from those
of the divisor and quotient in case the quotient has been absorbed
by subsequent processing. DV is not usually indexed, but it pavs
auch large benefits in space and time, especially in double-pre-
cision division. that the cost of extracode indexing is negligible.
It the divisor is less in magnitude than the dividend, or is zero,
the quotient has correct sign and, in general, maximum magnitude.
No infinite loop results in any case.

L: SI’ K; Subtract

A« () = (K if the final (A)

OVCTR « (OVCTR) =1,

The primary justification for this instruction is that it allows
multiple-precision addition subroutines to be changed into multi-
ple-precision subtract subroutines merely by changing the indexing
quantity. There are occasions in the middle of involved calcula-
tions where it is clumsy to construct a subtraction out of comple-
mentations and additions, especially when the sign of an overflow
is of interest. Since SU differs from AD only in that the operand
from memory is read out of the complement side of the buffer
register B rather than the direct side, its cost is virtually zero.
This last is not necessarily true when using core-transistor logic,
or two‘s complement notation.

includes % overflow,

7. Expansion of memory addressing

The AGC’s 12-bitaddress field is insufficient for specifying directly
all the registers in its memory. This predicament seems increas-
ingly to afflict most computers, either because indirect addressing
is assumed as a necessary evil from the start or, as was our case,
because our earliest estimates of memory requirements were wrong
by a factor of two or three. The method of indirect addressing
we arrived at uses a bank register MB, but with an important
maodification: the 3-bit number stored in SIB has no effect unless
the address is in the range (octal) 6000 to 7777. The MB register
contents are not interpreted as higher-order bits of the address;
thev are interpreted as integers which specify which bank of 1024
words is meant in the event of the address part of the instruction
being in the ambiguous range. The over-all map of memory is
shown in Table 2. The unambiguous, fised memory addresses
domain has come to be known as “fixed-fixed.”

It is interesting that this method of extending the addressing
capability was not the result of trying to improve upon more
conventional methods, but was alinost a consequence 0f the phys-

Chapter 7

Table 2 Address part of an instruction word

(Decimal)
0-3071 Fixed and erasable memory: unambiguous addresses.
3072-4095 Fixed memory, ambiguous address. Contents of MB

used to resolve the ambiguity. Up to 32 such banks
are possible.

ical difference between fixed and erasable memory. Since all data
other than constants are concentrated in the erasable memory,
these had to be exempt from modification by the MB register. An
alternative arrangement, whereby only the addresses of instruc-
tions (asopposed to the addresses within an instruction word) are
modified, would be deficient in that it would allow only instruc-
tions to be stored in banks; there would be no way to refer to
constants stored in banks, or to use bank addresses to store argu-
ments of arithmetic operations. The possibility of using two bank
registers is worthy of serious consideration [Casale, 19621, but it
did not occur to us.

In addition to the addresses in erasable, it is necessary to
exempt the addresses of interrupting programs (i.e., the addresses
to which a program interrupt transfers control) from the influence
of the MB register. It was clear that it would be valuable to have
a large body of unambiguous addresses for use in executive and
dispatcher programs.

The most frequent and critical applications of bank changing
are inthe AGC’s interpretive mode. Most of the programs relevant
to navigation are written in a parenthesis-free pseudocode notation
for economy of storage. An interpretive program executes these
pseudocode program by performing the indicated data accesses
and subroutine linkages.

The format of the notation permits two macrooperators (e.g.,
“double-precision vector dot product”) or one data address to be
stored in one AGC word. Thus data addresses appear as full 15-bit
words, potentially capable of addressing up to 32.768 registers.
Each such address is examined in the interpreter and the contents
of the bank register are changed if necessary; preparation is also
made for subsequent return if a subroutine call is being made.

The structure of the interpretive program, and its relationship
to the computer characteristics discussed in this paper will not
be taken up here except to point out that parenthesis-free notation
is particularty valuable ina short-word computer such as the AGC.
It permits a very substantial expansion of the address and pseudo-
operation fields without sacrificing efficiency in program storage
[Muntz, 1962].

Some aspects of the logical design of a control computer: a case study 155

156 Part 2

The instruction-set processor: main-line computers

The conversion of a 15-bit address into a bank number and an
ambiguous 12-bit address is as follows: the top 5 bits correspond
directly to the desired bank number. The remaining lower-order
10 bits. logically added to octal 6600, form the proper ambiguots
address. If the 15-bit address is less than octal 6000, however. the
address is in erasable or fixed-fixed memory. In this case the logical
addition of octal 600} is suppressed.

It is possible to have a program in one bank call a closed
subroutine in another bank, and then have control returned to the
proper place in the bank of origin. This is done by means of a
short bank switching routine which is in fixed-fised memory.

One potential awkwardness about this method of extending

APPENDIX 1 BACKGROUND FOR AGC DESIGN

Section 1 | Processors with one address per instruction

memory addresses is the possible requirement for a routine in one
bank to have access to large amounts of data stored in another.
There are many programming solutions to this problem. obviously
at a cost in operating speed: a better solution would be to have
two bank registers. No problems of this nature have yet material-
ized. however.

References

AlonR63; AlonR60; AlonR61: AlonR62; BeckF61; CasaC62; EnglW62;
HopkA63; MuntC62; RichR335; Wale\W62; Proc. Conf. Spaceborne Com-
puter Eng.; Anaheim, Calif., Oct. 30-31, 1962.

Name, Memory size
date (F = fixed Number Number of Purpose Features incorporated.
completed E = erasable) of bits instructions d design at this stage
MOD 1, F:448 11 and parity 4 plus involuntary Feasibility Prototype Counter increments,
1960 E 64 Interrupts,

Core-Transistor Logic,

Pulse rate outputs,

Editing registers,

Wired-in fixed memory,

Interpretive programs.
MOD 2, about 4000 total 23 and parity 16 plus indirect Unmanned Space Probe ""Extended Operation™ subroutine
not built linkages (only instance).
MOD 38, F 3584 15 and parity 8 Earth Satellite Modified one's complement,
1962 E: 512 Parallel adder,

Addressable central registers.
MOD 3cC, F: greater than 10+ 15 and parity 8 and involuntary Apolio Guidance CCS, INDEX. MULTIPLY in-
1962 E: greater than 103 structions.

Overflow counter,

Bank switching.
AGC. F: greater than 10+ 15 and parity 11 and involuntary Apollo Guidance DV, SU. MX instructions.
1963 E: greater than 10% Editing memory buffer.

All transistor NOR logic instead of
core-transistor logic,

Extracodes.

Parenthesis-free interpreter.

