

(Unclassified Title)
GUIDANCE SYSTEM OPERATIONS PLAN

AS-501

Vol. II CONTROL DATA AND ERROR ANALYSIS

December 1966

NOTICE - THIS DOCUMENT CONTAINANT OR MATION ADDESTING THE NATIONAL OF THE UNITED STATES WITHIN A CONTAINED OF THE UNITED LAWS, HILL IS CARE STORAGE OF THE CONTART IN ADDITIONAL OF THE NET OF THE CONTENTS OF THE CONTENTS IN ADDITIONAL OF THE NET OF THE CONTENTS OF THE CONTENTS IN ADDITIONAL OF THE OF THE CONTENTS OF

CAMBRIDGE 39, MASSACHUSETTS

copy # 50 of 409 copiesThis document contains 96 pages

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-23850, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065.

> This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or the revelation of which in any manner to an unauthorized person is prohibited by law.

184

(Rev. 1 - 12/66)

Table of Contents

Volume I Operations

Section

- 1 Introduction
- 2 G&N Flight Operations Summary
- 3 G&N System Description
- 4 Mission Logic and Timeline
- 5 Guidance Equations for CSM

Volume II Control and Error Data

Section.	6	Mission and Vehicle Control Data
	7	G&N Error Analysis

6 MISSION AND VEHICLE CONTROL DATA

6.1 Scope

Section 6 presents a summary of all data that either have an effect on AGC programming or are required for simulation and verification of AGC programs.

Numerical values are recorded in the most widely accepted units and may not be found in the memory explicitly as defined. These values are often rescaled, units corrected, or combined with other data in the most convenient and/or economical fashion.

Apollo mission and vehicle data for Flight AS-501 have been collected under the following headings:

Apollo Mission Data (Sec. 6.2) establishes the outline of the mission in terms of trajectories, profiles, etc. This information is required for simulation and verification of computer programs.

AGC Memory Data (Sec. 6.3) contains mission and vehicle dependent data that are written directly into the memory of the AGC. Other memory data are referred to in Sections 3, 4, and 5. The limited erasable section is reserved primarily for storage of computational variables. Those parameters that do not change during flight have been assigned to the fixed section of the memory.

Exceptions have been made for data that will not be available until shortly before the launch date.

Spacecraft Vehicle Data (Sec. 6.4) includes configuration, mass properties, propulsion, and aerodynamics data. With few exceptions, this information will not appear directly in the AGC program. These data will mainly be used for simulation and program verification.

Physical Constants (Sec. 6.5) will be used directly in the AGC programs as well as program verification. The AGC is programmed in the metric set of kilogram, meter, and centisecond (10^{-2} sec) . Conversion to other units is accomplished by use of the factors defined in this section.

6-1 (Rev.1 - 12/66)

6.2 Apollo Mission Data

6.2.3

6.2.1 Mission Trajectory

Nominal mission profile	Fig.	6.1,	6.2
Nominal Saturn boost profile	Fig.	6.3,	6.4
Sequence of events	Tabl	e 6.1	

The information in this section is taken and compiled from:

- boost phase; NASA/(MSC & MSFC) Trajectory Document #66-FMP-2 "AS-501/CSM-017 Joint Reference Trajectory" dated 10 May 1966.
- (2) spacecraft; NASA/MSC Simulation Run "Nominal AS-501 Mission Profile with AS-202 Guidance Logic " Run Date 10 September 1966.

6.2.2 Nominal CSM/SIVB Separation Attitude Conditions

X _{sc} axis	in plane of the trajectory, and in the direction of the
	forward horizontal
Y_{sc} axis	is along the momentum vector, $\underline{R} \times \underline{V}$
Z _{sc} axis	points up, and parallel to the geocentric radius vector
Roll rate	0 degree/second
Pitch rate	0 degree/second
Yaw rate	0 degree/second
Dispersions (3	Sigma) for Nominal Separation Attitude Conditions

X _{sc} axis attitude	2 degrees
\mathbf{Y}_{sc} axis attitude	2 degrees
Z _{sc} axis attitude	2 degrees
Roll rate residual	0.2 degree/second
Pitch rate residual	0.2 degree/second
Yaw rate residual	0.2 degree/second

6.2.4. SIVB Engine Shutdown Transients

Thrust decay from 100% to 5% rated thrustFig. 6.5Thrust decay from 5% rated to zero thrustFig. 6.6

Cutoff impulse from mainstage cutoff to 5-percent thrust is derived by multiplying the thrust level (at engine cutoff signal) by 0.224 second. The deviation about the cutoff impulse is the thrust level (at the cutoff signal) times \pm 0.030 second. The cutoff impulse from 5-percent thrust is derived by multiplying the thrust level (at engine cutoff signal) by 0.0235 second.

The information contained in section 6.2.4 is taken from the GN&C Data Exchange Program, MSC-S-10 submitted 23 August 1966.

6-3 (Rev. 1 - 12/66)

6-4 (Rev.1 - 12/66)

Fig. 6-2 Altitude - Longitude History

Fig. 6.3 Longitude, Latitude, Altitude, and Range During Boost to Parking Orbit

6-5 (Rev. 1 - 12/66)

Fig. 6.4 Inertial Azimuth, Inertial Velocity, and Inertial Path Angle During Boost to Parking Orbit

TABLE 6, 1 Mission AS-501 Sequence of Events

Angle (degree) Inertial Azimuth 75.355 88.049 81.213 97.945 03.496 117.702 75.557 116.796 117,930 100.036 59,950 62.332 68.466 89.338 67.984 90.00 1 Inertial Flight Path Angle (degree) -7.1209 -9.1888 20.255 15.044 -18, 1694 0.000 0.000 0.016 -0.000 0.925 15.487 26.792 27.941 -17.736 28.751 -23,008 1 32067.97 Inertial Velocity ഹ ഹ 9263.6 25560.2 თ [ft/sec.) 25567.7 25285.4 က 4 \mathfrak{S} 28349.9 34874.1 36334.2 22072.9 25978. 9 1340. 8776. 30669. 25393. 1415. 8395. 11 90,00 194, 326, 00 288, 983, 00 613, 705.00 627,948.00 646, 543, 00 1,918,798.75 8, 179, 087, 25 9, 289, 355, 50 50, 079, 460, 00 9,620,434,50 5, 141, 221, 00 2, 216, 140, 75 399, 999, 00 400,000.00 23, 500, 00 Altitude (feet) 81.4931⁰W 56.8107⁰W 23. 6097⁰W 20. 2074⁰W 19.2727⁰W 37, 3390⁰E 203, 299⁰W 118, 100⁰ E 53, 916⁰W 80.604⁰W 79.086^oW 66.218⁰W 79.834⁰W 132.888⁰E 161, 103⁰W Longitude 152, 151⁰E (degree) 4.21746⁰N 27.5369⁰N 14,8071⁰N 12. 8959⁰N 12, 3519⁰N 12.9918⁰N 21.9905⁰N 21. 2845^oN 30, 2075⁰N 31, 8527⁰N 28, 9052⁰S available) 32.681⁰N 28, 608⁰N 28, 826⁰N 29. 030⁰N 31.634⁰N (degree) Latitude --(not **Time From** 183,846 148,846 511.526 687.542 11486.034 11821.758 12423, 458 12517.758 12545.303 20925.644 29686, 215 29947.752 30183, 329 31066.774 28683, 148 Launch (second) 0.0 Entry (no SPS burns) 399, 999 feet CM/SM Separation S-IV B Ignition #2 S-IV B Cutoff #1 Entry 400, 000 ft. S-IV B Cutoff #2 Drogue Chute LES Jettison CSM/S-IV B S-I C Cutoff Deployment Event CSM SPS Ignition #1 S-II Cutoff Separation Ignition #2 CSM SPS Cutoff #1 CSM SPS Cutoff #2 CSM SPS Apogee Liftoff

NOTE: Altitudes are measured above the Fischer reference Ellipsoid of 1960. See Section 6.5

6-8 (Rev.1.- 12/66)

6-9 (Rev. 1 - 12/66)

6.3 CMC Memory Data

6.3.1 Prelaunch

6.3.1.1 Launch Pad #39A	Memory	Value
Geodetic latitude	E	28 ⁰ 38' 50.93'' N
Longitude	E	279 ⁰ 21' 51, 93'' E
Geocentric radius	Е	6373283 meters
Geocentric radius to G&N	-	not available
Fischer Ellipsoid radius	E	not available
Geoidal separation (ht. of MSL above ellipsoid	1) -	0 meter
Attitude of pad above MSL	-	not available
Inertial reference plane azimuth	E	72 ⁰ E of N
Optical target #1 : azimuth	E	291.00 ⁰
elevation	E	-015.02 ⁰
Optical target #2: azimuth	Е	253.00 ⁰
elevation	E	-014.90 ⁰

The geophysical data in this section are taken from NASA document M-DE-8020-008B, "Natural Environment and Physical Standards for the Apollo Program", April 1965.

6.3.1.2 Cold Soak Attitude

The cold soak attitude will be a fixed attitude with respect to the stable member. The desired attitude is defined as three angles included in prelaunch erasable memory load.

А	ngle X	\mathbf{E}	37.81762010 ⁰
А	ngle Y	E	-108.9135267 ⁰
А	ngle Z	Е	-5.050401772 ⁰
Т	'he above data are take	n from	MIT/IL Record of Change Form
#501-8.			

6.3.1.3 Prelaunch Erasable Memory Load Table 6.2

The following is a list of the terms, their definitions, SOLRUM 55 addresses, scale factors and units, decimal values, and octal equivalents for the erasable data load for digital simulations. Some of these terms will undoubtedly change before flight time. (Table is dated 26 October 1966).

> 6-10 (Rev.1 - 12/66)

Load
Memory
Erasable
Prelaunch
Table 6.2

IMU COMPENSATION

	•							
GRIASX	GURO RIAS DRIFT	0744	2 16480	- DEC -	207	(1)	76501	
GBIASU		0745	CENTI-SEC)	DEC -	1 83		77200	
G81ASZ		0746		DEC	25		C1151	
ADIAX	ACCELERATION-SENSITIVE GYRO DRIFT ALONG	0747	GYRO PULSES/	DEC -			77766	
ADIA U	THE INPUT AXIS	0150	PIPA PULSE	DEC			0000	
ZVIQ		0751		CEC 6			00000	
AD SRAX	ACCELERATION-SENSITIVE GURD DRIFT ALONG	0752	GYRO PULSES/	DEC -3			7775	
ADSRAY	THE SPIN-REFERENCE AXIS	0754	PIPA PULSE	DEC -8			77767	
ADSRAZ		0756	•	DEC			20000	
PBIASX	PIPA BIAS FACTOR	0736	Z (PIPA	DEC	011		05703	
DG I ASU		0140	PULSES/ CENTI-SEC)	DEC -3	442		71215	
PB1ASZ		0782	:	DEC -1	291		75364	
PIPASCFX	PIPA SCALE FACTOR	7570	-11 2 (PIPA COUNTS/PIPA COUNTS/PIPA	DEC -1	1140		52:73	
PIPASCFY		0741		DEC -1	348		61513	
PIPASCF2		0743		DEC -4	.765		66542	
PRELAUNCH ALIG	SNE NT		·					
DTEPOCH	ELAPSED TIME BETWEEN THE TIME THE LAUNCH Vector passed through the Infrital 2-X Plane and the time the Agc clock was zeroed	1073	28 2 centi-sec	2DEC &	200499	(2)	00572 16	263
VAZ	AZIMUTH OF VEMICLE Z-AXIS EAST OF NORTH	1352	1 REVOLUTION	2050 -	• 25	(31	67777 71	111
LATITUDE	LOCAL VERTICAL ASTRONOMICAL LUTITUDE OF Launch Pad 39	1314	I REVOLUTION	ZDEC 0	•079576327	(*)	02427 30	124

AZIMUTH	AZIMUTH OF STABLE WEMBER Z-AXIZ EAST OF North	1316	I REVOLUTION	2065 0.2	(2)	56314	146
POLYENTS	TRANSFER TO PITCH MONITCR PCLYNOMIAL Routine	1573	•	TC POLY		25554	
POLYEND	TRANSFER AT END OF POLYNOMIAL ROUTINE	1613	•	TC DANZIG		04024	
POLYCOFF + 00	COEFFICIENTS A OF THE BOOST POLYNOMIAL	1575	16 REVS.	20EC -4.728699766E+ 6	9 - 8	TTTT	7660
borkiver + 2D	Z	1577		20EC +4.874580990F+ 5	01+0	00121	1013
POLYC F + 40	2	1601	16 REV	2DEC +8+297190312E+10	÷2+2	20344 (:2216
POLYCOFF + 6D	A + A T + B T • •••• • • T 0 1 2 6	1603		ZDEC +8+338358159E+13	5+38	07253	0431
POLYCOFF + 8D		1505		2DEC -1.745826987E-16	3+52	46556 4	2203
POLYCOFF +10D		1607		2DEC +1 42 49994672 E- 20	B+65	35407	0210
POLYCCFF +12D		1611	:	20EC -301180898FFE=25	09+8	92269	11491
TROLL	TIME FROM LIFT-OFF AT WHICH ROLL WONITOR Begins	1562	Z CENTI-SEC	2DEC 810		00100	199 - 1
TPITCH	TIME FROM LIFT-OFF AT WHICH PITCH Monitor Regins	1564	Z CENTI-SEC	2DEC 13C0		00000	2424
TENDPTCH	TIME PITCH MONITOR IS CN	1566	28 2 CENTI-SEC	2DEC 13185		00000	1601
MAXROLL	FINAL ROLL ANGLE WINUS INITIAL POLL Angle	1702	1 REVOLUTION	20EC .0 5	(9)	01463 (06215
1/RLLRTE	ONE OVER DESIRED ROLL RATE	1700	28 36000/2 Centisec/rev	20EC 3.6 E4 8-28	(7)	00005	06240
TTUMON	NOMINAL TIME FROM END OF PITCH MONITOR To Start of Tumble Monitca	1572	14 2 CENTI-SEC	7EC 3815		341	
TAZ	AZIMUTH OF LANDWARK I AT LAUNCH SITE	1346	ICDU SCALING		(8)		
TAZ +1	AZIMUTH OF LAND ARK 2 AT LAUNCH SITE	4721			(6)		
TEL	ELEVATION OF LANDMARK I AT LAUNCH SITE	1350	1/4 REV		((1))		
TEL +1	ELEVATION OF LANDMARK 2 AT LAUNCH SITE	1361			(11)		
TATLANI	NOMINAL FLIGHT TIME TO ATLANTIC TARGET	1617	28 2 CENTI+SEC	2DEC 135000	(12)	00010	07530
RTALLANI	POST-LET ABORT TARGET VECTOR AT LIFT- def + tatlavi in imu coopdinntes. assiving 'me platfadu goes ineptial at lift-def	1621	HALF-UNIT VECTOR	2DEC 5.314826438 E-1	3-1	10401	17748

i

İ

RTATLAN1 +2		1623		2060	1=447898020 E-2 b-1	00166 23450
CTATIANI 44		1476		17575	1-0 (-3)2C434074-0	
		6701	¥¢	ZDEC	1-0 I-1 0/24646468	2220 26421
TPACIF1	NOMINAL FLISHT TIME TO PACIFIC TARGET	1627	2 CENTI-SEC	2DEC	3106677 (13)	00275 23565
RTPACIFI	NOWINAL PACIFIC TARGET VECTOR AT LIFT- OFF + TPACIFI IN IMU COORDINATES, Assuming the platform goes inertial at Lift-OFF	1631	HALF-UNIT VECTOR	2DE C	+7 . 352864243 E-1 6-1	13607 16731
RTPACIF1 +2		1633		ZDEC	+ 4 •233019840 E-2 8-1	00532 30467
RTPACIF1 +4		1635		2DEC	•6•764333141 E-1 8-1	12645 12737
UNITH	POLAR AXIS IN STABLE MEMBER COORDINATES	1043	HALF-UNIT VECTOR	2DEC	+0.479418298 8-1 (14)	07527 14503
UNITH +2		1045		ZDEC	-0.834638185 B-1	62512 64466
UNITW +4		1047		2DEC	+0+271177423 8-1	00255 17422
Z	POSITION VECTOR AT GRR	0765	25 2 meters	2DEC	•64373383925 E•6 B-25	06050 00077
RN +2		0767		ZDEC	+1,708965500 E+4 B-25	00010 13015
RN ++		0771		2DEC	-54552990700 E+3 8-25	77775 51167
MISSION CONTRO	JL PROGRAM					
TDECAU	EFFECTIVE THRUST DECAW TIME	1560	10 2 CENTI-SEC	- 55C	41	77726
DELTAT	VALUE OF COMPUTING INTERVAL	1027	9 2 CENTI-SECS	ZDEC	200 8-9	14400 00000
1/PIPADT	VALUE OF ACCELEROMETER SAMPLING INTERVAL	0755	8 2 centi-secs	DEC 2	00 B-8	31000
NSHIFT	AVERAGE G ROUTINE SCALING CONSTANT	1040		DEC -	5	27772
XSHIFT	AVERAGE G ROUTINE SCALING CONSTANT	1041	•	DEC 9		00011
ESOIVR)	ECCENTRICITY SQUARED FOR SPS1 BURN	1500	۲ ۲	ZDEC	•3538035468 8-4 (15)	00552 11337
ESQ(VR) +2	ECCENTRICITY SQUARED FOR SPS2 BURN	0551		2DEC	•9984440601 B-4	01776 15010
SEMILAT	SEMI-LATUS RECTUM FOR SPSI BURN	1552	27 2 meters	2DEC	1•001146995 E7 8-27	02306 03234
SEMILAT +2	SEWI-LATUS RECTUM FOR SPS2 RUPN	1554		ZDEC	1•279126488 E7 B+27	03031 15702

TFFMIN	TIME-TO-FREE-FALL AT WHICH TO SCHEDULE SPS2 IGNITION IN 2 MINUTES	1676	2B 2 CENTI-SEC	ZDEC	72000	(16)	40000	14500
TFFMOM	VALUE OF TFF TO USE TO CCMPUTE TIME-OF- Coast IF TFF is not computable	1720	28 2 CENTI-SEC	ZDEC	1620000	(11)	r0102	74040
CGY	SPSI C.G. ROTATION ABOUT S/C Y-AXIS	1704	RADIANS	2DEC	0.0276	(18)	00104	06263
CGY +2	SPS2 C.6. RCTATION ABRUR S/C Y-AXIS	1706		ZDEC	0.0350		01075	16051
C62	SPSI C+6+ ROTATION ABOUT S/C 2-AXIS	1710		ZDEC	0.0935		02773	34733
C62 +2	SPS2 C ₆ G ₆ rotation apout s/c 2-axis	1712		2050	e.1105		13422	15646
ATD7	SPSI INTEGRATED INITIAL THRUST ACC. MAG.	•171	5 Z M/CENTISEC	2DE C	9 *589 E-2 8-5	(61)	00001	03040
ATDT •2	SPS2 INTEGRATED INITIAL THRUST ACC. MAG.	1716		ZDEC	30.48 E-2 8-5		00234	01660
S2SWITCH	SWITCH TO RE-COMPUTE SPS2 BURN ATTITUDE	1722	١	001	0		00000	
REFSWTCH	SWITCH TO FORCE 280% FT FF REFERENCE	1723	•	001	0		00000	
REDOSP = 1	SWITCH TO REPEAT SPS1 AT SPS2 IGNITION	1724	1	001	0		00000	
ANGLEX	DESTRED COLD SOAK GIMBAL ANGLES	1673	ICDU SCALING	DEC	• - • 2 1 00 0 T	(50)	~6562	
ANGLEO		1674		DEC	-0.605075		54505	
ANGLEZ		1675		DEC	-0.0280577		17063	
UPTIME	TIME TO INCORPORATE 1ST R.V.T. UPDATE	1671	28 2 CENTI-SEC	001	7777	(12)	77776	
UPTIME 41		1672	14 2 CENTI-SEC	001	1111		17776	

0) SCALE FACTOR IS THE WAXIMUW VALUE THAT CAN BE REPRESENTED IN TWE AGC FOR THIS VARIABLE 1) MEASURED VALUES AS OF 9/22/66 2) ASSUMES AGC CLOCK ZEROED AT 1 P.M. ON FEB. 15. 1967 3) DUE WEST 3) DUE WEST 4) 28 DEG. 38 MIN. 90.92 SEC 5) 72 DEGS 5) 72 DEGS 5) 72 DEGS 6) 72 N66 DSKY LOAD IS +291.00 DEG 7) DESIRED ROLL RATE = 1 DEG/SEC 7) DE NOTES 20112

6-15 (Rev. 1 - 12/66)

6.3.2 Saturn Launch Vehicle Boost Phase		
	Memory	Value
Interval from liftoff to LET jettison (assumed complete) E	184.0 seconds
Interval from liftoff to start of roll maneuver	\mathbf{E}	8.1 seconds
Duration of roll maneuver	Ε	18.0 seconds
Total roll maneuver angle	\mathbf{E}	18.0 degrees
Maximum rollmaneuver rate	E	1 degree/second
Interval from liftoff to start of pitch maneuver	E	13 seconds
Duration of pitch maneuver	E	131.85 seconds
Pitch polynominal coefficients: A ₀	E	$-4.728695766 \times 10^{-6}$
A	E	+4.874580890 x 10^{-6}
A ₂	E	+8.297180312 x 10^{-10}
A ₃	E	+8.338368159 x 10^{-13}
A	E	$-1.745826987 \times 10^{-16}$
A	E	+1. 249994672 x 10^{-20}
A ₆	E	$-3.118989855 \times 10^{-25}$

NOTE 1 The form of the pitch polynomial is:

$$\Theta = \sum_{\substack{n=0\\n=0}}^{6} A_n t^n$$

where Θ = angle between inertial horizontal at launch and the vehicle

X - axis, in degrees.

t = time in seconds when t = 0 at liftoff +10 seconds.

6-16 (Rev. 1 - 12/66) 6.3.3 Attitude Maneuver Memory Data

Attitude maneuver constants will be found in the CSM guidance equation section of this document. These referenced values are found in the fixed memory.

6.3.4 Thrust Vector Control (TVC) Memory Data

Refer to CSM guidance equation section of this document. These referenced values are found in the fixed memory.(For nominal and abort missions.)

6.3.5 Programmed Time Delays

The preset delays between events are outlined in the mission logic and timeline section of this document. Some of these delays are in fixed memory and others in erasable memory. Erasable memory delays are underlined.

6.3.6 Guidance and Navigation Constants

The constants used in the guidance and navigation equations are presented in Section 5 of this document. These constants are in the fixed portion of the memory.

6.3.7 Re-Entry Memory Data

CSM attitude for CM/SM separation:

 X_{sc} - axis is above the velocity vector by 60⁰

 \boldsymbol{Y}_{sc} - axis along the momentum vector $\underline{\boldsymbol{R}}\times\underline{\boldsymbol{V}}$

 Z_{sc} - axis above the velocity vector

CM Re-Entry Attitude:

 X_{sc} - axis is above the velocity vector by 158° Y_{sc} - axis is along the momentum vector $\underline{R} \times \underline{V}$ Z_{sc} - axis above the velocity vector (Assume a lift-vector up attitude) angle of attack 22°

Trim angle of attack

Nominal recovery point:

Geodetic latitud e	30.2075	°N
Longitude	161.103	$^{\rm o}W$

A complete listing of (1) computer variables in the CMC erasable memory, and (2) constants and gains in the CMC fixed memory may be found in the CM re-entry guidance equation section of this document.

> 6-17 (Rev. 1 - 12/66)

6.4 Spacecraft Vehicle Data

6.4.1 Apollo Vehicle Coordinate Reference System

Spacecraft CSM-017 reference dimensions Fig. 6.7

The above figure is taken from TRW Systems Document #2131-H009-R8-000 "Apollo Mission Data Specification D" dated 15 August 1966.

SM RCS, SPS, and fuel tank configuration Fig. 6.8 Source unknown

6.4.1.1 Specific Station Locations

RCS jet thruster locations and vectors Table 6.3

The information in this table is compiled from the GN&C Data

Exchange Program, NAA-S-22 submitted 7 April 1965.

SPS fuel and oxidizer tank dimensions and locations Table 6.4

The information in this table is taken from the GN&C Data Exchange Program, NAA-S-68 submitted 11 March 1966.

SPS engine gimbal plane

X _A lo	ocation	833.	20	inches
Y _A lc	ocation	0.	0	inches
Z _A lo	ocation	0.	0	inches

This information is taken from the GN&C Data Exchange Program, NAA-S-68 submitted 11 March 1966.

6-18 (Rev. 1 - 12/66)

Fig. 6.7 Spacecraft CSM-017 Reference Dimensions 6-19 (Rev. 1 - 12/66)

6-20 (Rev. 1 - 12/66)

Table 6.3 RCS Jet Thruster Locations and Vectors

Z _A - Component in Inches	-83.56 cos (7.25 ⁰) -83.56 sin (7.25 ⁰) 83.56 cos (7.25 ⁰) 83.56 sin (7.25 ⁰)
Y _A - Component in Inches	$-83.56 \sin (7, 25^{\circ})$ 83.56 cos (7.25 ^o) 83.56 sin (7.25 ^o) -83.56 cos (7.25 ^o)
X _A - Component in Inches	958,905 958,905 958,905 958,905
Apollo Stations of Four Jet Quads	Quad A Quad B Quad C Quad D

Z - Component	-sin (10 ⁰)	sin (10 ⁰)	sin (10 ⁰)	-sin (10 ⁰)	0	0	0	0	cos (10 ⁰)	cos (10 ⁰)	-cos (10 ⁰)	-cos (10 ⁰)	sin (10 ⁰)	-sin (10 ⁰)	-sin (10 ⁰)	sin (10 ⁰)
Y - Component	0	0	0	0	sin (10 ⁰)	-sin (10 ⁰)	-sin (10 ⁰)	sin (10 ⁰)	-sin (10 ⁰)	sin (10 ⁰)	sin (10 ⁰)	-sin (10 ⁰)	cos (10 ⁰)	cos (10 ⁰)	-cos (10 ⁰)	-cos (10 ⁰)
X - Component	cos (10 ⁰)	ços (10 ⁰)	-cos (10 ⁰)	-cos (10 ⁰)	cos (10 ⁰)	cos (10 ⁰)	-cos (10 ⁰)	-cos (10 ⁰)	0	0	0	0	0	0	0	0
Thrust Unit Vector*	RCS Jet 1, Quad C	2, Quad A	3, Quad A	4, Quad C	5, Quad D	6, Quad B	7, Quad B	8, Quad D	9, Quad B	10, Quad D	11, Quad D	12, Quad B	13, Quad A	14, Quad C	15, Quad C	16, Quad A

6-21 (Rev. 1 - 12/66) * Thrust vectors are specified as though the quad centers were on the Apollo Y and Z axes.

Table 6.4 SPS Fuel and Oxidizer Tank Dimensions and Locations

	Tank Position in Spacecraft's X _A , Y _A , Z _A Coordinates*	Radius in inches	X _A - Top in inches	X _A - Bottom in inches	YA in inches	Z _A in incnes
>	Oxidizer Storage Tank	25.5	985.8	832.0	-48.3	-6.6
п	Oxidizer Sump Tank	25.5	985.8	832.0	48.3	6.6
VI	Fuel Storage Tank	22.5	988.65	832.0	-14.8	-47.8
III	Fuel Sump Tank	22.5	988.65	832.0	14.8	47.8

* Mixture ratio = 2.0

6-22 (Rev. 1 - 12/66) 6.4.2 Apollo Vehicle Mass Property Data

CSM spacecraft mass properties summary	Table 6.5
SM vehicle mass properties summary	Table 6.6
CSM spacecraft propellant loading summary	Table 6.7
SM-SPS usable propellant data	Table 6.8

The information in this section is taken from TRW Systems Document #2131-H009-R8-000, "Apollo Mission Data Specification D AS-501" dated 15 August 1966.

6.4.3 Apollo Vehicle Dynamic Data

6.4.3.1 Slosh - Mixture Ratio of 2.0/1.0

3.82 rad/second
4.07 rad/second
44.55 slugs
13.7 slugs
970 to 840 inches
974 to 840 inches
-48.3 to 48.3 inches
14.8 to -14.8 inches
-6.6 to 6.6 inches
47.8 to -47.8 inches
0.005
0.005

The X-locations of the sloshing masses were obtained by eyeballing the SM diagram in NAA XTASI entry 13 page 3, together with XTASI 24 page 8. The Y- and Z- locations are taken from the GN&C Data Exchange Program, NAA-S-68 submitted 11 March 1966. Allowance has been made for the fact that fuel and ozidizer tank assignments differ between Block I and Block II. AS-501 Spacecraft Mass Properties Summary⁽¹⁾ Table 6.5

i

ļ

		0	Center of Grav	ity ⁽²⁾	Mon	aent of Inertia	(3)	Product	of Inertia ⁽³⁾	
	W Color		(ui)			(slug-ft ²)			(slug-ft ²)	
	(1b)	××	Υ <mark>Α</mark>	^Z A	1 XX	1 YY	1 22	T xy	1 xz	Jz Z
Spacecraft Systems/Subsystems										
Launch Escape Subsystem	8,420 ± 100	1, 296. 6 ± 0. 5	0.0±0.1	-0.6 ± 0.1	677	23, 707	23, 699	18	290	1
Command Module	11,250 ± 300	$1,040.4 \pm 1.5$	0.7 ± 0.8	5.5±0.5	5,658	4, 962	4, 387	- 3	-231	12
Service Module	$40,512 \pm 313$	906.8±0.5	18.4±0.3	-1.0±0.3	18,526	30, 065	28, 880	516	-2,030	2,790
SLA	3,738 ±100	638.0 ± 0.5	1.3±0.5	-1.0 ± 0.5	9,611	12, 394	12,092	- 3	-2,028	49
LTA-10	29,500 ± 200	587.5 ± 1.0	0.1 ± 0.5	0 ± 0.5	19, 900	21, 600	22, 000	0	0	0
Spacecraft at Luttoff	93,420±498	846.5 ± 1.0	8.2 ± 0.2	0.1 ± 0.3	56,089	1, 046, 653	1, 046, 409	10, 232	-7,679	2,675
Remove Launch Escape System	8,420±100	1, 296. 6 ± 0. 5	0.0 ± 0.1	-0.6±0.1	677	23, 707	23, 699	18	290	-
Spacecraft in Earth Orbit	85,000 ± 488	801.9 ± 1.1	9.0 ± 0.3	0.2 ± 0.3	55,277	613, 065	617, 820	17, 564	-7, 314	2,662
Remove SLA	3,738 ± 100	638.0 ± 0.5	1.3±0.5	-1.0±0.5	9,611	12, 394	12, 092	• 3	-2, 028	49
Remove LTA-10	29,500 ± 200	587.5 ± 1.0	0.1 ± 0.5	0±0.5	19,900	21, 600	22, 000	0	0	0
CSM-017 in Earth Orbit	51, 762 ± 434	935.9 ± 0.8	14.6±0.3	0.4 ± 0.2	24, 862	63, 021	67, 777	-3,985	-6,016	2,582
NOTES:										

All tolerances shall be used as 3 y values.
 Centers of gravity are referenced to the Apollo spacecraft coordinate system origin.
 Moments and products of inertia are about the center of gravity of each item. The 3 y tolerance on moments and products of inertia are z 15%.

Table 6, 6 AS-501 Service Module Mass Properties

			Center of Grav	ity ^(e)	Mon	nent of Inertia	(c) ¹	Produc	t of Inertia ⁽³	5
	Weight (1b)	XA	YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ZA	XX	AA I I 11-Bnrs)	Izz	I XX	I I XZ	IVZ
Service Module, Inert ⁽³⁾	9, 193	908. 2	0.7	-0.6	5,705	10,011	9, 732	337	-579	-361
SLA Attach Ring	62	837.1	0.0	-1.8	93	48	46	0	0	U
SPS Propellant in Tank										
Fuel	10,127	901.8	- 7. 8	±36.5	1,244	5,468	4, 913	- 609	- 984	552
Oxidizer	20, 299	906.8	40.3	16.4	2,242	9, 292	8, 835	206	-868	-1,097
RCS Propellant in Tank ⁽⁴⁾	831	959.0	0.0	0.0	853	544	441	0	0	
Total Service Module ⁽⁵⁾	40,512 ± 313	906. 8 ± 0. 5	18.4±0.3	-1.0±0.3	18,526	30,065	28,880	516	-2.030	2.79

Centers of gravity are referenced to the Apollo spacecraft coordinate system origin.
 Moments and products of in-stia are about the center of gravity of each item
 Service Module less SPS and RCS propellant in tanks.
 Centers of gravity of the propellants in the service module RCS tanks remain constant through usable propellant consumption.
 Products of inertia are care and moments of inertia are directly proportional to propellant weight.

(5) All tolerances shall be used as 3σ values

6-25 (Rev.1 - 12/66)

Weight Summary
Propellant
S-501 CSM
Table 6.7 A

	Se	rvice Module SP	5(4)	Š	ervice Module R	cs	Cor	mmand Module F	scs
		Weight (Ib)			Weight (lb)			Weight (lb)	
	Fuel	Oxidizer	Total	Fuel	Oxidizer	Total	Fuel	Oxidizer	Total
Usable Propellant In Tanks									
Available for Mission	9, 72 9	19,441		3	¢		-	2	
Mixture Ratio Tolerance	292	584		263	527		75	150	
Loading Reserve	51	101		3	ŝ		-	2	
Start Loss	11	18.			•				
Total Usable Propellant In Tanks ⁽¹⁾	(10,083)	(20, 144)	30, 277.	(569)	(538)	807	(22)	(154)	231
Unusable Propellant In Tanks									
Propellant In Retention Reservoir	42	74							
Vapor in Tanks	2	81							
Expulsion Efficiency	0	0		9	18		ŝ	9	
Total Unusable Propellant In Tanks	(44)	(155)	199	(9)	(18)		(3)	(9)	6
Total Propellant In Tanks ⁽²⁾ (3)	(10, 127)	(20, 299)	30, 4 26	(275)	(556)	831	(80)	(160)	240
System Propellant Residuals									
Propellant Trapped In Engine	21	48							
Propellant Trapped In Transfer Lines	3	7							
Propellant Trapped In Engine Lines	11	42		1	٣		10	19	
Total System Propellant Residuals	(35)	(26)	132	(1)	(2)	4	(01)	(19)	29
Total Propellant Loaded	(10, 162)	(20, 396)	30, 558			835			269
Helium			155			۳			-
Nitrogen			2						

Notes:

(1) Usable quantities are based on O/F ratio of 2:1.

(2) See table 3-3 for service module SPS and RCS propellant mass properties.
(3) See table 3-7 for command module RCS propellant mass properties.

(4) The SPS primary propellant gauging system accuracy is ± (0. 35% of the capacity of the tanks + 0. 35% of the propellant remaining in the tanks). The SPS auxiliary propellant gauging system accuracy is ±(0. 35% of the capacity of the tanks + 0. 35% of the propellant remaining in the tanks + 2. 3% of the propellant remaining in the storage tank).

6-26 (Rev.1 - 12/66)

SPS Propellant by Tank Block I Fuel Sump
Table 6.8

I

)

1

tia	I yz	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
t of Ineri 19-ft2)	I xz	-0.0	-0.0	-0.0	-0.0	-0-0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
Produc	I xy	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
rtia	I zz	0.0	0. 2	0.9	2. 6	5. 2	9.0	13.9	19.9	28.0	36.0	45.1	55.5	67.3	80.5	95.6	112.6	131.6	153.0	176.6	202.8	231.8	263.7	298.7	336.7	378. 2	423. 2	472.1	524.8
nent of Ine (slug-ft2)	I I XY	0.0	0. 2	0.9	2.6	5. 2	9.0	13.9	19.9	28.0	36.0	45.1	55.5	67.3	80.5	95.6	112.6	131.6	153.0	176.6	202.8	231.8	263.7	298. 7	338.7	378. 2	423. 2	472.1	524.8
Mon	X	0.0	-0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0,0	0.0	0.0	-0.0	-0.0	0.0	-0.0	-0.0	0.0	-0.0	0.0	0.0	0.0	0.0	-0.0
	Zcg	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8	-47.8
of Gravity	Y cg	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8	-14.8
Center o	X cg	832.0	834.5	836.4	838. 3	840.1	841.9	843.7	845.4	847.4	849.1	850.7	852. 3	853.9	855.5	857.1	858.7	860. 2	861.8	863.4	864.9	866.5	868.0	869.6	871.1	872.7	874. 2	875.8	877. 3
	Weight (1b)	0.01	31.56	92.85	181.44	292.87	422.73	566.59	720.04	905.27	1,065.04	1, 224. 82	1, 384. 59	1, 544. 37	1, 704. 14	1, 863. 92	2,023.69	2, 183. 47	2, 343. 24	2, 503. 02	2, 662. 79	2, 822, 57	2, 982. 34	3, 142. 12	3, 301. 89	3, 461. 67	3, 621. 44	3, 781. 22	3, 940. 99

6-27 (Rev.1 - 12/66) SPS Propellant by Tank Block I Fuel Sump (Continued) ∞ . 0 Table

0.0 0 0 0 0 0 0 0 0 0 0 0 ΥZ ö **.** • 00 °. . 0 **.** ö ö Product of Inertia 0000 (slug-ft²) -0.0 00 -0.0 -0.0 -0.0 0 0 0 -0.0 -0.0 -0.0 -0.0 -0.0 0 0 0 0 0 0 -0ö 0ò ò o' o' 0. ò **.** o' oʻ ġ ò XZ ò -0.0 0 0 0 0 ο 0 0 00 0 0 0 0 0-°, --. -. . oʻ o' o' X . -ဝုံဝုံ Ģ o' ZZ 890. 1 026. 8 664.0 995.2 642. 2 707.4 320.4 499.3 831.1 581.4 759.6 170.1 777.2 851.8 σ l, 199. 6 168.4 1, 517. 930. 1,405. 015. 104. (, 300. 1, 635. 335. Moment of Inertia <u>_</u> _ **.** പ് **ณ์ณ์ณ์ณ์**ณ์ (slug-ft²) Å 777. 2 581.4 642.2 707.4 8 Q 1, 890. 1 2, 206. 8 2, 206. 8 320. 4 499. 3 2, 499. 3 2, 995. 3 3, 168. 8 3, 335. 1 851.1 1, 759. 1, 104. 1,405. 517. 930. 1, 199. 1, 300. 1, 635. 015. **-**-0.0 0.0 ,X 0000000 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 œ 8 80 **∞** ∞ Zcg -47. -47. 47. -47. 47. **Center of Gravity** cg -14.8 -14.8 -14.8 00 00 00 ø ø ω œ ø -14. -14. -14. - 14. -14. -14. - 14. -14. -14. - 14. -14. (in. X 899. 0 900. 5 902. 0 903.6 906.9 878. 9 909.4 911.3 880.4 883. 5 885. 1 892.8 894.8 909.9 882.0 886.6 891.2 897.4 905.1 912.7 889.7 888.1 895. 9 914. ł 6, 177. 94 6, 337. 62 6, 497. 39 6, 657. 17 6, 816. 94 420.32 580.09 739.87 899.64 538. 74 698. 52 858. 29 998.02 157.06 7, 311. 68 604.74 10 219.19 457.44 4, 100. 77 4, 260. 54 059.42 378.97 018.07 Weight (1P) 738. 3 ~ 4 ÷ 4. 4 ທີ່ທີ່ທີ່ທີ່ 🗸 ທີ ທີ

> 6-28 (Rev.1 - 12/66)

Table 6.8 SPS Propellant by Tank Block I Fuel Storage

,

	Center o (in	f Gravity		Mom	ent of Ine (slug-ft ²)	tia	Produc (sl	t of Inerti ug-ft ²)	a
Weight (1b)	X cg	Y cg	Z cg	I xx	1 yy	I zz	xy	I xz	I yz
0.01	832.0	14.8	47.8	0.0	0.0	0.0	0.0	0.0	0.0
31.56	834.5	14.8	47.8	-0.0	0.2	0.2	0.0	0.0	0.0
92.85	836.4	14.8	47.8	-0-0	0.9	0.9	0.9	0.0	0.0
181.44	838, 3	14.8	47.8	-0.0	2.6	2. 6	0.0	0.0	0.0
292.87	840.1	14.8	47.8	-0.0	5. 2	5.2	0.0	0.0	0.0
422.73	841: 9	14.8	47.8	0.0	0°6	9.0	0.0	0.0	0.0
566.59	843.7	14.8	47.8	-0.0	13.9	13.9	0.0	0.0	0.0
720.04	845.4	14.8	47.8	-0.0	19.9	19.9	0.0	0.0	0.0
905.27	847.4	14.8	47.8	0.0	28.0	28.0	0.0	0.0	0.0
1,065.04	849.1	14.8	47.8	0.0	36.0	36.0	0.0	0.0	0.0
1, 224. 82	850. 7	14.8	47.8	-0.0	45.1	45.1	0.0	0.0	0.0
1, 384. 59	852. 3	14.8	47.8	- 0. 0	55. 5	55.5	0.0	0.0	0.0
1,544.37	853.9	14.8	47.8	-0.0	67.3	67.3	0.0	0.0	0.0
1,704.14	855. 5	14.8	47.8	-0.0	80.5	80.5	0.0	0.0	0.0
1, 863. 92	857.1	14.8	47.8	0.0	95.6	95.6	0.0	0.0	0.0
2, 023. 69	858. 7	14.8	47.8	0.0	112.6	112.6	0.0	0.0	0.0
2, 183. 47	860. 2	14.8	47.8	-0.0	131.6	131.6	0.0	0.0	0.0
2, 343. 24	861.8	14.8	47.8	-0.0	153.0	153.0	0.0	0.0	0.0
2, 503. 02	863.4	14.8	47.8	0.0	176.6	176.6	0.0	0.0	0.0
2, 662. 79	864.9	14.8	47.8	-0-0	202.8	202.8	0.0	0.0	0.0
2, 822. 57	. 866. 5	14.8	47.8	-0.0	231.8	231.8	0.0	0.0	0.0
2, 982. 34	868.0	14.8	47.8	0.0	263.7	263.7	0.0	0.0	0.0
3, 142. 12	869. 6	14.8	47.8	-0-0	298.7	298.7	0.0	0.0	0.0
3, 301. 89	871.1	14.8	47.8	0.0	336.7	336.7	0.0	0.0	0.0
3,461.67	872.7	14.8	47.8	0.0	378. 2	378. 2	0.0	0.0	0.0
3, 621. 44	874. 2	14.8	47.8	0.0	423.2	423. 2	0.0	0.0	0.0
3, 781. 22	875.8	14.8	47.8	0.0	472.1	472.1	0.0	0.0	0.0
3, 940. 99	877.3	14.8	47.8	-0.0	524.8	524.8	0.0	0.0	0.0
4, 100. 77	878.9	14.8	47.8	-0.0	581.4	581.4	0.0	0.0	0.0

_

6-29 (Rev.1 - 12/66) SPS Propellant by Tank Block I Fuel Storage (Continued) Table 6.8

	Center	of Gravity	~	Mo	ments of li (slug-ft ²	nertia)	Produ (5	slug-ft ²)	rtia
ght)	X _{cg}	Y cg	Zcg	xx	I	Izz	1 xy	Ixz] yz
0.54	880.4	14.8	47.8	0.0	642. 2	642. 2	0.0	0.0	0.0
0.32	882.0	14.8	47.8	0.0	707.4	707.4	0.0	0.0	0.0
0.09	883. 5	14.8	47.8	0.0	777.2	777.2	0.0	0.0	0.0
39, 87	885.1	14.8	47.8	0.0	851.8	851.8	0.0	0.0	• • •
99.64	886. 6	14.8	47.8	0.0	930.9	930.9	0.0	0.0	0.0
59.42	888.1	14.8	47.8	0.0	1,015.2	1,015.2	0.0	0.0	0.0
19. 19	889.7	14.8	47.8	0.0	1, 104.7	1,104.7	0.0	0.0	0.0
78.97	891.2	14.8	47.8	0.0	1, 199. 6	1, 199. 6	0.0	0.0	0.0
38.74	892.8	14.8	47.8	-0.0	1, 300. 1	1, 300. 1	0.0	0.0	0.0
98.52	894. 3	14.8	47.8	-0.0	1,405.9	1,405.9	0.0	0.0	0.0
58 29	895. 9	14.8	47.8	0.0	1,517.7	1, 517. 7	0.0	0.0	0.0
18.07	897.4	14.8	47.8	0.0	1, 635. 5	1, 635. 5	0.0	0.0	0.0
77.84	899.0	14.8	47.8	0.0	1, 759. 6	1, 759. 6	0.0	0.0	0.0
37.62	900.5	14.8	47.8	0.0	1, 890. 1	1, 890. 1	0.0	0.0	0.0
97.39	902.0	14.8	47.8	-0.0	2, 026. 8	2, 026. 8	0.0	0.0	0.0
57.17	903.6	14.8	47.8	0.0	2, 170. 1	2, 170. 1	0.0	0.0	0.0
16.94	905.1	14.8	47.8	0.0	2, 320. 4	2, 320. 4	0.0	0.0	0.0
98.02	906.9	14.8	47.8	0.0	2, 499. 3	2, 499. 3	0.0	0.0	0.0
57.06	908.4	14.8	47.8	0.0	2, 663. 6	2, 663. 6	0.0	0.0	0.0
11.68	909.9	14.8	47.8	-0.0	2, 830. 6	2, 830. 6	0.0	0.0	0.0
33.60	911.1	14.8	47.8	0.0	2, 967.1	2, 967. 1	0.0	0.0	0.0

6-30 (Rev.1 - 12/66)

Sump
Oxidizer
Ē
Block
Tank
by
Propellant h
SPS
6.8
Table

į.

		far	ININI	ment of Inert	18	Ч	oduct or the	rtia 🗇
	(inches)			(slug-ft ²)			(slug-ft ²)	
xcg	Ycc	^z cg	,xx	17	Izz	¹ x/	I xz	I
832.0	-18. 3	6.6	-0.0	0.0	-0.0	0.0	0.0	0.0
834.7	48.3	6.6	-0.0	0.5	0.5	0.0	0.0	0.0
836.6	48.3	6.6	0.0	2. 3	2.3	-0.0	-0.0	0.0
839.6	48.3	6.6	-0.0	6.0	6.0	0.0	0.0	0.0
840.4	48.3	6.6	-0.0	12.4	12.4	0.0	0.0	0.0
842.3	48.3	6.6	-0.0	21.2	21.2	0.0	0.0	0.0
844.1	48.3	6.6	-0.0	32.6	32.6	0.0	0.0	0.0
845.9	48.3	6.6	-0.0	46.7	46.7	0.0	0.0	0.0
847.9	48.3	6.6	-0.0	85.9	85.9	0.0	0.0	0.0
849.6	48.3	6.6	-0.0	84.3	84.3	0.0	0.0	0.0
851.2	48.3	6.6	-0.0	104.8	104.8	0.0	0.0	0.0
852.3	48.3	6.6	-0.0	127.7	127.7	0.0	0.0	0.0
854.4	48.3	6.6	-0.0	153.2	153.2	0.0	0.0	0.0
855.9	48.3	6.6	-0.0	181.7	181.7	0.0	0.0	0.0
857.5	48.3	6.6	-0.0	213.5	213.5	0.0	0.0	0.0
859.0	48.3	6.6	-0.0	249.0	249.0	0.0	0.0	0.0
860.6	48.3	6.6	0.0	288.3	288.3	0.0	0.0	0.0
862.1	48.3	6.6	-0.0	331.9	331.9	0.0	0.0	0.0
863. 6	48.3	6.6	-0.0	380.1	380.1	0.0	0.0	0.0
865.1	48.3	6.6	-0.0	433.1	433.1	0.0-	0.0	0.0
866.7	48.3	6.6	-0.0	491.3	491.3	0.0	0.0	0.0
868.2	48.3	6.6	-0.0	554.9	554.9	0.0	0.0	0.0
869.0	48.3	6.6	-0.0	601.0	601.0	0.0	0.0	0.0
869.7	48.3	6.6	-0.0	624.4	624.4	0.0	0.0	0.0
871.2	48.3	6.6	-0.0	6 669. 9	699, 9	0.0	0.0	0.0
872.7	48.3	6.6	-0.0	781.9	781.9	0.0	0.0	0.0
874.2	48.3	6.6	-0.0	870.6	870.6	0.0	0.0	0.0
875.7	48.3	6.6	-0.0	966. 3	966. 3	0.0	0.0	0.0
877.3	48. 3	6.6	0.0	1069.3	1069.3	0.0	0.0	0.0
878.8	48.3	6.6	-0.0	1180.0	1180.0	0.0	0.0	0.0
880. 3	48. ~	6.6	-0.0	1298.7	1298.7	0.0	0.0	.00.0
881.8	:18°.3	6, 6	-0.0	1425.0	1425. 0	-0.0	0.0	U. Ū

6-31 (Rev.1 - 12/66) SPS Propellant by Tank Block I Oxidizer Sump (Continued) Table 6.8

ļ

Weight	Cei	nter of Grav (inches)	/ity ⁽¹⁾	Mon	nent of Inerti (slug-ft ²)	a (2)	Pro	duct of Iner (slug-ft ²)	ia '-'
(10)	x	YCG	z _{cg}	xx	T	I_zz	I ×Y	I xz	1 <u>yz</u>
9155.85	883. 3	48.3	6.6	-0.0	1561.2	1561.2	-0.0	0.0	0.0
9475.25	884.8	48.3	6.6	0.0	1705.6	1705.6	-0.0	0.0	0.0
9794.65	886. 3	48.3	6.6	-0.0	1859. 2	1859. 2	0	0.0	0.0
10114.05	887.8	48.3	6.6	-0.0	2016.0	2016.0	0.0	0.0	0.0
10433.45	889. 3	48.3	6.6	-0.0	2189. 2	2189. 2	0.0	0.0	0.0
10752.85	890.8	48.3	6.6	-0.0	2372.5	2372.5	0.0	0.0	0.0
11072. 25	892. 3	48.3	6.6	-0.0	2566. 2	2566. 2	0.0	0.0	0.0
11391.65	893.8	48.3	6.6	-0.0	2770.7	2770.7	0.0	0.0	0.0
11711.05	895.3	48.3	6.6	-0.0	2986. 3	2986. 3	0.0	0.0	0.0
12030.45	896.8	48.3	6.6	-0.0	3213. 2	3213. 2	0.0	0.0	0.0
12349.85	898. 3	48.3	6.6	-0.0	3451.8	3451.8	0.0	0.0	0.0
12669.25	899.8	48.3	6.6	-0.0	3702.4	3702.4	0.0	0.0	0.0
12988.65	901.3	48.3	6.6	-0.0	3965.4	3965.4	0.0	0.0	0.0
13308.05	902.8	48.3	6.6	0.0	4240.9	4240.9	0.0	0.0	0.0
13627.45	904. 3	48.3	6.6	-0.0	4529.4	4529.4	0.0	0.0	0.0
13989.44	906.0	48.3	6.6	-0.0	4872. 3	4872. 3	0.0	0.0	0.0
14307.37	907.5	48.3	6.6	-0.0	5187.9	5187.9	0.0	0.0	0.0
14616.47	909.0	48.3	6.6	-0.0	5508.1	5508.1	0.0	0.0	0.0
14907.85	910.4	48.3	6.6	-0.0	5823.2	5823.2	0.0	0.0	0.0
15202.31	911.8	48.3	6.6	-0.0	6155.9	6155.9	0.0	0.0	0.0
15481.01	913.1	48.3	6.6	-0.0	6489.0	6489.0	0.0	0.0	0.0

6-32 (Rev.1 - 12/66)

r Tank Block
ā
Propellant
SPS
ω
Ö
Table

Oxidizer Storage

	Cen	ter of Gravi (inches)	ity ⁽¹⁾	W	oment of Ine ¹ (slug-ft ²)	tia ⁽²⁾	Pro	duct of Inert (slug-ft ²)	tia (²)
Weight	x	YCC	2 _{CC}	1	I	1,2,2	1 _{xv}	1	1
	3	8		ł	\$		1		4
0.01	832.0	-48.3	-6.6	-0.0	0.0	-0.	-0.0-	-0.0	0.0
63.06	834.7	-48.3	-6.6	-0.0	0.5	0.5	-0.0	-0.0	0.0
185.58	836.6	-48.3	-6.6	0.0	2. 3	2. 3	0.0	0.0	0.0
362. 66	838. 6	-48.3	-6.6	-0.0	6.0	6.0	-0.0	-0.0	0.0
585.42	840.4	-48.3	-6.6	-0.0	12.4	12.4	-0.0	-0.0	0.0
845.02	842.3	-48.3	-6.6	-0.0	21.2	21.2	-0.0	-0.0	0.0
1132.60	844.1	-48.3	-6.6	-0.0	32.6	32.6	-0.0	-0.0	0.0
1439.36	845.9	-48.3	-6.6	-0.0	46.7	46.7	-0.0	-0.0	0.0
1809.65	847.9	-48.3	-6.6	-0.0	66. 0	66. 0	-0, 0	-0.0	0.0
2129.05	849.6	-48.3	-6.6	-0.0	84.4	84.4	-0.0	-0.0	0.0
2448.45	851.2	-48.3	-6.6	-0.0	104.9	104.9	-0.0	-0.0	0.0
2767.85	852.8	-48.3	-6.6	-0.0	127.7	127.7	-0.0	-0.0	0.0
3087. 25	854. 4	-48.3	-6.6	-0.0	153.2	153.2	-0.0	-0.0	0.0
3406. 65	855.9	-48.3	-6.6	-0.0	181.8	181.8	-0.0	-0.0	0.0
3726.05	857. 5	-48.3	-6.6	-0.0	213.6	213.6	-0.0	-0.0	0.0
4045.45	859.0	-48.3	-6.6	-0.0	249.0	249.0	-0.0	-0.0	0.0
4364.85	860. 6	-48.3	-6.6	0.0	288.4	288.4	-0.0	-0.0	0.0
4684. 25	862.1	-48.3	-6.6	-0.0	332.0	332.0	-0.0	-0.0	0.0
5003. 65	863. 6	-48.3	-6.6	-0.0	380.1	380.1	-0.0	-0.0	0.0
5323.05	865.1	- 48. 3	-6.6	-0.0	433.1	433.1	0.0	-0.0	0.0
5642.45	866. 7	-48.3	-6.6	-0.0	491.3	491.3	-0.0	-0.0	0.0
5961.85	868. 2	-48.3	-6.6	-0.0	555.0	555.0	-0.0	-0.0	0.0
6281.25	869.7	-48.3	-6.6	-0.0	624.4	624.4	-0.0	-0.0	0.0
6600.65	871.2	-48.3	-6.6	-0.0	700.0	700.0	-0.0	-0.0	0.0
6920.05	872.7	-48.3	-6.6	-0.0	781.9	781.9	-0.0	-0.0	0.0

6-33 (Rev.1 - 12/66)
SPS Propellant by Tank Block I Oxidizer Storage (Continued) Table 6.8

0.0 I yz Product of Inertia⁽²⁾ (slug-ft²) -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 1 -0.0 -0.0 -0.0 10.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0--0.0 0.00.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 1 xY 2195.3 2572.0 2776. 2 3218.3 3456.7 3969. 8 870.6 1425.7 1561.2 2022.4 2378.4 3707.1 4245.2 1859.2 2991.6 466.3 069.4 1180.1 1298.8 1705. 6 4533.4 4876.1 5191.5 5511.5 5770.1 122 Moment of Inertia⁽²⁾ (slug-ft²) 3456.7 5770.1 1859.2 2022.4 2195.3 3218.3 3707.1 870.6 966.3 069.4 1298.8 1561.2 1705.6 2378.4 2572.0 2776.2 2991.6 3969.8 1245.2 4533.4 4876.1 1180.1 1425.7 5191. 5511. ۲^۲ -0.0 -0.0 0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 $\frac{1}{xx}$ - 0.0 - 0. 0 0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 -0.0 - 6. 6 -6.6 -6.6 -6.4 - 6. 6 -6.6 -6.6 -6.6 - 6. 6 -6.6 - 6. 6 - 6. 6 - 6. 6 -6.6 -6.6 - 6. 6 -6.6 -6.6 -6.6 -6.6 -6. 6 -6. 0 -6.6 -6.6 ^ZCG -6.6 Center of Gravity⁽¹⁾ (inches) -48.3 -48.3 -48.3 -48.3 -48. 3 -48.3 -48.3 -48.3 -48.3 -48.3 -48.3 -48.3 -48.3 -48.3 -48. 3 -48.3 -48.3 -48.3 -48.3 -48.3 -48.3 -48.3 -48. 3 -48.3 -48.3 $\gamma_{\rm CG}$ 896.8 899.8 902.9 910.2 887.8 889. 3 890.8 8.92. 3 893.8 895. 3 898. 3 907.6 909.0 877. 3 881.8 883. 3 884.8 886. 3 901.4 904.4 906.1 874.2 875.7 878.8 880. 3 x_{CG} 9794.65 14862.40 12988.65 13627.45 14307. 37 14616.47 7239.45 7558.85 7878. 25 8197.65 8517.05 8836.45 9155.85 9475.25 10114.05 10433.45 10752.85 11072.25 11391.65 11711.05 12030.45 12349.85 12669.25 13308.05 13989.44 Weight (1b)

> 6-34 (Rev.1 - 12/66)

6.4.4 Service Propulsion System (SPS) Data

6.4.4.1.	Engine Physical Properties
	Mass

The source for the above datum is unofficial, telecon with Mr. Jack Potts S&ID/NAA.

Engine	inertia	246.1 slug feet 2
Engine	c.g. to gimbal	8 inches

25 slugs

This information is taken from the GN&C Data Exchange Program, NAA-S-46 submitted 8 October 1965.

6.4.4.2 Gimbal Actuator System (MOD II)

SPS thrust vector orientation Fig. 6.9

The above figure is taken from TRW Systems Document #2131-H009-R8-000 "Apollo Mission Data Specification D A/S-501" dated

15 August 1966.

Pitch gimbal limit	<u>+</u> 6 degrees
Pitch gimbal offset	- 4 degrees
Yaw gimbal limit	\pm 7 degrees
Yaw gimbal offset	0 degrees
Thrust- to - gimbal offset	<u>+</u> 1/8 inch

The above information is taken from TRW Systems Document #2131-H009-R8-000 "Apollo Mission Data Specification D AS-501" dated 15 August 1966.

Jet damping coefficient	171 foot-pound/rad/sec
Hose stiffness	285 foot-pound/rad

The above information is taken from discussions of S&ID/MIT Meeting #66B of 17 September 1963.

Thrust angular misalignment 0.5 degree

The above datum was taken from NAA XTASI #10.

Actuator inertia	IA	65 slug - feet 2
Actuator lag	WA	6.6 rad/second
Total amplifier - clutch gain	KS•KT	20(3530) ftlb/rad.
Torque limit	LMT	1500 ft-lb.
Slew rate limit	LMR	0.1 rad/sec.

NOTE: Because of the inclusion of a Block II actuator in the AS-501 vehicle, the above actuator parameters (LMT and LMR) are speculative. In particular, a worst case LMR should be sufficient to detect anomalies caused by the Block II actuator.

Reference MIT/IL MDRB Record of Change Form # 501-18 dated 31 October 1966.

> 6-35 (Rev.1 - 12/66)

ONFIDENTIAL

Service Propulsion Subsystem Thrust Vector Orientation Fig. 6.9

6-36 (Rev.1 - 12/66)

CONFIDENTIAL

6.4.4.3 SPS Engine Vacuum Performance

Turn-on-off step transient		0.27 second
Buildup impulse to 90% rated thrust		300 <u>+</u> 200 lb - second
Thrust buildup vs time of engine-on signal		Fig. 6.10
Specific impulse		311.4 <u>+</u> 1.5 seconds
Thrust	steady-state operation	$21,500 \pm 215$ lbs.
Propellant flow rate		69.0 lb/second
Thrust decay vs time	e of engine-off signal	Fig. 6.10
Tail-off impulse to 1	.0% rated thrust	10,800 <u>+</u> 1200 lbsec.

The information contained in this section is taken from TRW Systems Document #2131-H009-R8-000, "Apollo Mission Data Specification D AS-501" dated 15 August 1966.

Thrust Vector Control Autopilot block diagram Fig 6.11

Reference MIT/IL MDRB Record of Change Form #501-18 dated 31 October 1966.

6-37 (Rev. 1 - 12/66)

ONEIDEN

Fig. 6.10 SPS Engine Vacuum Performance Summary

6-38 (Rev.1 - 12/66)

GONFIDENTIAL

6-39 (Rev. 1 - 12/66)

Fig. 6.11 TVC Autopilot Yaw Channel

NOTE: MECHANICAL AND ELECTRICAL NULLS ARE COINCIDENT

6.4.5 CSM Reaction Control System (RCS)

6.4.5.1 RCS Jet Physical Properties

RCS thrust chamber configuration Fig. 6.12

This figure is taken from TRW Systems Document #2131-H009-R8-000, "Apollo Mission Data Specification D AS-501", 15 August 1966.

Offset angle	7.25 degrees
Cant angle	10.0 degrees
Thrust radial arm	83.5596 inches

The above data are taken from the GN&C Data Exchange Program, NAA-S-22 submitted 7 April 1965.

6.4.5.2 Jet Vacuum Performance

Ì

i.

L

Total impulse		
Propellant consumed	vs electrical pulse width	Fig. 6.13, 6.14
Specific impulse		
Thrust]		
Specific impulse	steady-state operation	Fig. 6.14
Propellant flow rate		
Thrust buildup transients		not available
Thrust decay transients		not available

The figures referenced in this section are taken from TRW Systems Document #2131-H009-R8-000, "Apollo Mission Data Specification D AS-501" dated 15 August 1966.

RCS Autopilot block diagram	Fig. 6.1
-----------------------------	----------

Reference MIT/IL MDRB Record of Change Form #501-18 dated 31 October 1966.

🗰 onle kristige

Fig. 6.12 SM/RCS Thrust Chamber Locations

6-41 (Rev. 1 - 12/66)

_____* **___**___

-CONFIDENTIAL

Note: Data are high, low, and average values resulting from a large number of qualification tests. High and low values shall be used as 3_{σ} values.

Fig. 6.13 SM/RCS Vacuum Performance Data for Pulse Widths Less than 100 ms

> 6-42 (Rev. 1 - 12/66)

CONFIDENTIAL

- - -

Note: Data are high, low, and average values resulting from a large number of qualification tests. High and low values shall be used as 3₇ values.

Fig. 6.14 SM/RCS Vacuum Performance Data for Pulse Widths Greater than 100 ms

6-43 (Rev. 1 - 12/66)

Fig. 6.15 RCS Autopilot Yaw Channel

6-44 (Rev. 1 - 12/66) 6.4.6 CM Vehicle Data

6.4.6.1	Apollo CM Coordinate Reference System	
	Spacecraft CSM-017 reference dimensions	Fig. 6.7
	CM axes and notation system	Fig.6.16

The figures shown above are taken from TRW Systems Document #2131-H009-R8-000, "Apollo Mission Data Specification D AS-501", dated 15 August 1966.

6.4.6.2 Specific Station Locations

IMU location	1056.6 inches
This number is taken from NAA-MIT/IL ICD	MH01-01301-116
RCS jet thruster locations	Table 6.9

This table is taken from TRW Systems Document #2131-H009-R8-000, "Apollo Mission Data Specification DAS-501", dated 15 August 1966.

6.4.6.3 Apollo CM Mass Property Data

СМ	mass properties summary	Table 6	3.10
СМ	sequential mass properties	Table 6	3.11

The data contained in this section are taken from TRW Systems Document #2131-H009-R8-000, "Apollo Mission Data Specification D AS-501", dated 15 August 1966.

		${ t C}_{ extsf{L}}$ of Th	rust Exit Plan	e on Outer MI	
Thrust Chamber		x _c	^ү с	^Z C	^R C
5	А	27.6750	72.2846	-4.4211	72.4197
7	В	27.6750	72.2846	4.4211	72.4197
8	С	27.6750	-72.2846	4.4211	72.4197
6	D	27.6750	-72.2846	-4.4211	72.4197
3	E	27.6750	-4.4211	-72.2846	72.4197
1	F	27.6750	4.4211	-72.2846	72.4197
10,11	(I)G	32.3000	-51.9826	-50.3454	72.3661
9,12	(II)H	32.3000	51.9826	-50.3454	72.3661
2	J	85.5000	0	-35,5483	35.5483
4	к	91.1250	0	-31.9616	31.9616
1	1	1			1

Table 6.9 RCS Jet Thruster Locations

6-45 (Rev. 1 - 12/66)

6-46

(Rev.1 - 12/66)

Table 6.10 AS-501 Command Module Mass Properties

k ,

		Ŭ	enter of Gravi	ty ⁽¹⁾	Mor	nent of Incrtia	2)	Produ	t of Inertia ⁽²⁾	
	Weight		(in)			(slug-ft ²)		5)	110-ft	
	(1b)	XA	A ^Y	Z.A	I xx	1 	Izz	XX	I xz	I yz
Command Module										
Command Module Inert ⁽³⁾	11,010	1,040.8	0.8	+ . +	5,40 4	4, 801	4,320	6-	-182	29
RCS Propellant In Tanks ⁽⁴⁾	(540)	1, 022. 6	-5. 6	57.0	52	4	817	0	0	0
System A	120	1,022.5	4.8	55.1	54	1	23	0	0	0
System B	120	1, 022. 6	-16.1	56. 0	70	+	9	0	0	0
Total Command Module	$11,250 \pm 300$	$1, 040. 4 \pm 1.5$	0.7±0.8	5.5 ± 0.5	5,458	4, 902	4,387	-3	-231	12
Notes:										

Conters of gravity are referenced to the Apollo spacecraft coordinate system origin.
 Moments of inertia are about the center of gravity of each item.
 Command Module less RCS propellant in tanks.
 Centers of gravity of the propellants in the command module RCS tanks remain constant through usable propellant consumption. Products of inertia are zero and moments of incrtta are directly proportional to propellant weight.

6-47 (Rev. 1 - 12/66)

Mass Properties
odule Sequential]
Command M
AS-501
Table 6.11

		Gen	ater of Gr	avity ⁽¹⁾	X	oncent of Inc	rtia (2)	Prod	ct of Inertia ((;
			(ui)			(slu <u>g-fr²)</u>			lug-ft ²)	
	м етди (Лъ)	V _X	YA.	V,	, xx	1 ×y	22	XX	1 xz	7 <u>7</u>
CM - Launch, Boost and Mission	11,250	1,040.4	- · · ·	6.5	5, 658	4, 91,2	4, 387	. ع	-231	12
l.ess:										
Pre-entry RCS Propellant Consumed	10	1,022.6	- 5. 6	9.13	7	0	2	U	0	0
CM - Prior to Entry ⁽³⁾	11.240 ± 500	1,0404,15	U.7±0 8	5.5±0.5	5,650	4,956	4, 384	- 3	-229	13
1.485:										
RCS Propellant Consumed	5-2 2	1.022.6	- 5. tu	0 25	15	1	+	0	0	0
Ablator Burnoff (4)	261	1,011.6	0.0	¢. 1	178	7+1	135	0	0	0
Forward Heat Shield	367	1,100.4	0.1	0.6	63	4	45	0	0	0
Drogue Chutes	63	1.090.3	0.0	-20 g	-	•	7	0	0	0
CM - Prior to Main Chute Deployment	10,480	1,038.9	C. 8	5.4	5, 342	4,340	5, 812	-2	-173	17
1.455;										
RCS Propellant Jettisoned	191	1,022.6	-5.6	57.0	42	4	38	0	0	0
CM at main chute deployment (and at splashdown)										
Main Chutes	412	1,090.5	- 0. 7	6.3	50	21	37	0	0	0
CM - Post Landing	9,877	1,037.0	0 1	-7 -7	5,135	3,947	3,479	-	-146	31

Notes:

Centers of gravity are referenced to the Apollo spacecrait coordinate system origin.
 Moments and products of inertia are about the center of gravity of each item
 All tolerances shall be used as 3 values.
 Ablator burnoff does not change L/D trun See Section (1).

6-48 (Rev.1 - 12/66)

6.4.6.4 CM Re-Entry Aerodynamic Data

Defemone anos	120.4 foot^2
Reference area	129.4 leet
Reference diameter	145 inches
Heat shield cant	0.1300 degree
Moment reference center: X-componen	t 1141.25 inches
Y-componen	t 0.0 inch
Z-componen	t 0.0 inch
Aerodynamic coefficients	Table 6.12
Lift and drag characteristics for $M = 6 \rightarrow 2$	5 Fig. 6.17
Trim L/D vs C.G. locations	Fig. 6.18

The information contained in this section is taken from TRW Systems Document # 2131-H009-R8-000, "Apollo Mission Data Specification D AS-501," dated 15 August 1966 as amended by United States Government Memorandum PM 3/M-170/66 dated 14 November 1966.

> 6-49 (Rev. 1 - 12/66)

TABLE 1

Command Module - Spacecraft 017 Aerodynamic Coefficients

ALPHA	с _м	C _N	CA
	<u>M</u>	= 0.4	
110 1300	-0 1021	0.2359	-0.0405
115, 1300	-0.0866	0.2186	-0.1605
120.1300	-0.0590	0,1902	-0.3604
125.1300	-0.0289	0.1529	-0.5003
130.1300	0.0037	0.1076	-0.6102
135.1300	0.0392	0.0554	-0.7001
140.1300	0.0770	-0.0018	-0.7800
145.1300	0,1068	-0.0509	-0.8449
150,1300	0.1210 0.1196	-0.0810	-0.8998
155.1300	0.1100	-0.0921	-0.9398
165 1300	0.0630	-0.0531	-0.9449
170, 1300	0.0333	-0.0331	~0.9299
175.1300	0.0068	-0.0181	-0.9200
180,1300	-0.0198	-0.0031	-0,9150
185.1300	-0.0467	0.0129	-0.9170
190.1300	-0.0739	0.0279	-0.9201
	M	= 0.7	
110.1300	-0.1455	0.3139	-0.0607
115.1300	-0.1070	0.2775	-0.2006
120.1300	-0.0690	0.2391	-0.3805
125.1300	-0.0377	0.1988	-0.5505
130.1300	-0.0085	0.1544	-0.7004
135.1300	0.0177	0.1111	-0.8203
140,1300	0.0303	0.0700	-0.8902
150, 1300	0.0267	0.0518	-0.9851
155.1300	0.0116	0.0497	-1.0101
160.1300	0,0097	0.0287	-1.0281
165.1300	0.0208	-0.0084	-1.0380
170.1300	0.0304	-0.0424	-1.0399
175.1300	0.0242	-0.0524	-1,0379
180.1300	-0.0096	-0.0223	-1.0200
185,1300	-0.0357	-0.0003	-1.0500
190.1300	-0.0413	-0,0034	1.0000
	M	= 0.9	
110.1300	-0.2519	0.4947	-0.1111
115.1300	-0.1902	0.4213	-0.2960
120.1300	-0.1357	0.3529	-0.4808
120,1300	-0.0918	0.2040	-0.7805
135, 1300	-0.0288	0.1630	-0 8904
140,1300	-0.0087	0.1168	-0.9753
145.1300	-0.0076	0.0976	-1.0402
150.1300	-0.0167	0.0935	-1.0902
155.1300	-0.0224	0.0844	-1.1302
160.1300	-0.0057	0.0424	-1.1501
165.1300	0.0094	0.0024	-1.1000
175 1300	0.0170	-0.0210	-1 1349
180, 1300	-0 0046	-0.0276	-1.1249
185.1300	-0.0207	-0.0156	-1.1350
190.1300	-0.0217	-0.0226	-1.1550

_

TABLE 1 (Cont'd)

Command Module - Spacecraft 017 Aerodynamic Coefficients

ALPHA	с _м		C _A
	_	M = 1.1	
110.1300	-0.2942	0.5113	-0.2962
115.1300	-0.2548	0.4670	-0.4411
120.1300	-0.2075	0.4126	-0.6009
120, 1300	-0.1529	0,3502	-0.7908
135 1300	-0.0561	0.2138	-1.1005
140.1300	-0.0083	0.1173	-1.2003
145.1300	0.0169	0.0582	-1.2401
150.1300	0,0136	0.0421	-1.2751
155.1300	0.0083	0.0311	-1.3001
160.1300	0.0046	0.0190	-1.3250
170 1300	0.0027	-0.0030	-1.3400
175, 1300	0.0069	-0.0330	-1.3399
180.1300	-0.0078	-0.0250	-1.3379
185.1300	-0.0192	-0.0160	-1.3350
190.1300	-0.0082	-0.0321	-1.3499
	<u> </u>	M = 1.2	
110.1300	-0.3004	0.5093	-0.3112
115.1300	-0.2591	0.4629	-0.4711
120.1300	-0.2103	0.4056	-0.6309
125.1300	-0.1537	0.3382	-0.8058
130.1300	-0.0932	0.2008	-0.9706
140, 1300	-0.0016	0, 1023	-1.1902
145.1300	0.0186	0.0492	-1.2401
150.1300	0.0209	0.0232	-1.2551
155.1300	0.0143	0.0121	-1.2750
160.1300	0.0100	0.0031	-1.3000
170 1300	0.0120	-0.0120	-1.3200
175, 1300	0.0138	-0.0340	-1.3399
180.1300	0.0101	-0.0381	-1.3449
185.1300	0.0082	-0.0411	-1.3449
190.1300	0.0064	-0.0430	-1.3349
	. <u>-</u>	M = 1.35	
110.1300	-0.3589	0.5994	-0.2864
115.1300	-0.3202	0.5590	-0.4563
120,1300	-0.2534	0.4776	-0.6311
125.1300	-0.1862	0.3922	-0.8009
135 1300	-0.0579	0.2215	-1.1205
140, 1300	-0.0096	0.1422	-1.2303
145.1300	0.0272	0.0779	-1.3452
150.1300	0.0415	0.0388	-1.4001
155.1300	0.0428	0.0148	-1.4200
160.1300	0.0361	0.0008	-1.4300
170 1300	0.0270	-0.0213	-1 4400
175.1300	0,0151	-0.0303	-1.4399
180.1300	0.0126	-0.0383	-1.4399
185.1300	0.0114	-0.0453	-1.4399
190.1300	0.0102	-0.0523	-1.4399

6-51 (Rev. 1 - 12/66)

TABLE 1 (Cont'd)

Command Module - Spacecraft 017

Aerodynamic Coefficients

i.

ALPHA			CA
	M	= 1.65	
110.1300	-0.3294	0.5493	-0.3112
115.1300	-0.2976	0.5130	-0.4612
120.1300	-0.2552	0.4696	-0.6111
125.1300	-0. 2103	0.4173	-0.7709
130.1300	-0. 1624	0.3569	-0.9308
135.1300	-0. 1160	0.2926	-1.0707
140.1300	-0.0713	0.2243	-1.1955
145.1300	-0.0350	0.1620	-1.3004
150.1300	-0.0083	0.1089	-1.3753
155.1300	0.0081	$\begin{array}{c} 0.\ 0628\\ 0.\ 0277\\ 0.\ 0067\\ \end{array}$	-1.4251
160.1300	0.0161		-1.4551
165.1300	0.0150		-1.4700
170,1300	0.0130	-0.0094	-1.4780
175,1300	0.0102	-0.0204	-1.4800
180,1300	0.0083	-0.0284	-1.4819
185,1300	0.0078	-0.0344	-1.4799
190,1300	0.0097	-0.0424	-1.4779
	M	= 2.0	
110.1300	-0.3199	0.5293	-0.2912
115.1300	-0.2776	0.4860	-0.4451
$120.1300 \\ 125.1300 \\ 130.1300$	-0.2372 -0.1954 -0.1564	$\begin{array}{c} 0.4407 \\ 0.3904 \\ 0.3390 \end{array}$	-0.5870 -0.7269 -0.8608
135.1300	-0.1185	0.2877	-1.0007
140.1300	-0.0837	0.2364	-1.1305
145.1300	-0.0514	0.1822	-1.2504
150.1300	-0.0241	0.1289	-1.3503
155.1300	-0.0050	0.0798	-1.4202
160.1300	0.0097	0.0367	-1.4601
165.1300	0.0195	$\begin{array}{c} 0.0016 \\ -0.0204 \\ -0.0284 \end{array}$	-1.4800
170.1300	0.0211		-1.4950
175.1300	0.0155		-1.4999
180.1300	0.0109	-0.0334	-1.4999
185.1300	0.0063	-0.0354	-1.4999
190.1300	0.0027	-0.0374	-1.4999
	M	= 2.4	
110.1300	-0.2974	0.4944	-0.2811
115.1300	-0.2579	0.4541	-0.4160
120.1300	-0.2203	0. 4127	-0.3359
125.1300	-0.1833	0. 3704	-0.7008
130.1300	-0.1492	0. 3281	-0.8307
135.1300	-0.1165	0.2828	-0.9808
140.1300	-0.0852	0.2355	-1.0955
145.1300	-0.0566	0.1872	-1.2154
150.1300	-0.0336	0.1420	-1.3253
155.1300	-0.0156	0.0978	-1.4002
160.1300	-0.0046	0.0597	-1.4451
165.1300	0.0047	0.0246	-1.4801
170.1300	0.0087	-0.0014	-1.5050
175.1300	0.0073	-0.0154	-1.5200
180.1300	0.0058	-0.0264	-1.5199
185.1300	0.0079	-0.0364	-1.5149
190.1300	0.0112	-0.0454	-1.4999

TABLE 1 (Cont'd)

- - - -

Command Module - Spacecraft 017 Aerodynamic Coefficients

. .

.

ALPHA	C _M		C _A
	-	M = 3.0	
110.1300	-0.2624	0.4394	-0.2510
115.1300	-0.2223	0.4001	-0.3909
120, 1300	-0.1840	0.3598	-0.5208
125, 1300	-0.1499	0.3205	-0.6607
130, 1300	-0.1191	0.2832	-0.8006
135 1300	-0.0952	0 2479	-0.9156
140, 1300	-0.0694	0 2086	-1 0505
145 1300	-0.0481	0 1694	-1 1604
150 1300	-0 0275	0 1291	-1 2653
155 1300	-0.0113	0 0929	-1 3502
160, 1300	-0.0056	0 0668	-1 4102
165, 1300	-0.0067	0 0467	-1.4601
170, 1300	-0.0112	0.0326	-1.4901
175.1300	-0.0110	0.0146	-1.5100
180.1300	-0.0078	-0.0034	-1.5150
185,1300	-0.0010	-0.0214	-1.5050
190.1300	0.0102	-0.0384	-1.4899
		M = 4.0	
110, 1300	-0.2332	0.3935	-0.2109
115.1300	-0.1891	0.3492	-0.3508
120.1300	-0.1494	0.3069	-0.4907
125.1300	-0.1147	0.2686	-0.6256
130,1300	-0.0866	0.2323	-0.7505
135.1300	-0.0647	0.2020	-0.8805
140.1300	-0.0482	0.1737	-0.9954
145.1300	-0.0345	0.1465	-1.1003
150.1300	-0.0233	0.1203	-1.2003
155.1300	-0.0117	0.0921	-1.2852
160.1300	-0.0044	0.0659	-1.3552
165.1300	-0.0001	0.0428	-1.4101
170.1300	0.0015	0.0237	-1.4501
175.1300	0.0001	0.0077	-1.4750
180.1300	0.0007	-0.0084	-1.4850
185.1300	0.0028	-0.0234	-1.4800
190.1300	0.0098	-0,0383	-1.4599
		$M = 6 \rightarrow 25$	
110,1300	-0.2150	0.3701	-0.1978
115.1300	-0.1660	0.3197	-0.3407
120.1300	-0.1229	0.2724	-0.4806
125.1300	-0.0841	0.2241	-0.6195
130.1300	-0.0597	0.1998	-0.7435
135.1300	-0.0460	0.1835	-0.8734
140.1300	-0.0383	0.1703	-0.9894
145.1300	-0.0244	0.1440	-1,0928
150.1300	-0.0154	0.1218	-1,1863
155.1300	-0.0066	0.0976	-1.2772
160.1300	-0.0017	0.0764	-1.3552
165.1300	0.0032	0.0543	-1.4238
170.1300	0.0064	0.0322	-1.4711
175.1300	0.0079	0.0131	-1.4940
180.1300	0.0087	-0.0019	-1,5000

6-53

- -

(Rev. 1 - 12/66)

Fig. 6.17 CM (AF-017,020) M = $6\rightarrow 25$, Lift and Drag Characteristics

6-54 (Rev. 1 - 12/66)

Fig. 6.18 Command Module (AF-017, 20) L/D_{trim} As A Function of Center-of-Gravity Location Using M = 6-25 Data. Heat Shield Cant is 0.13^o.

6.4.6.5 CM Reaction Control System (RCS) Data

RCS thrust chamber co	onfiguration	Fig. 6.19
Total impulse		
Propellant consumed	vs electrical pulse width	Fig. 6.20, 6.21
Specific impulse		
Thrust		
Specific impulse	steady state operation	Fig. 6.21
Propellant flow rate		
Thrust buildup transie	nts	not available
Thrust decay transient	ts	not available

The figures referenced in this section are taken from TRW Systems Document # 2131-H009-R8-000, "Apollo Mission Data Specification D AS-501," dated 15 August 1966.

6-57 (Rev. 1 - 12/66)

C YAW OR AFT PITCH ENGINES (TRUE)

OUTER ML -

X_C = 27.6750 147° TRUE

SECTION M - M (TYPICAL RADIAL SECTION THRU Q YAW OR AFT PITCH ENGINES)

Fig. 6.19 CM/RCS Thrust Chamber Locations

(3) Jet numbering suggested by MIT.

(1) Not on outer ML - inters. pt. of f_{c} roll engines. (2) All linear measurements in inches. Notes:

CONFIDENTIAL

Data are high, low, and average values resulting from a large number of qualification tests, with the exception of w, where only average values are available. High and low values shall be used as 3_{σ} values.

Fig. 6.20 CM/RCS Vacuum Performance Data for Pulse Width Less than 100 ms.

(Rev. 1 - 12/66)

CONFIDENTIAL

CONFIDENTIAL

Data are high, low and average values resulting from a large number of qualification tests, with the exception of w, where only average values are available. However, high and low values of w are presented for steady state operation. High and low values shall be used as 3_{σ} values.

Fig. 6.21 CM/RCS Vacuum Performance Data for Pulse Widths Greater than 100 ms.

6-59

(Rev. 1 - 12/66)

7. G&N ERROR ANALYSIS

7.1 Introduction

The results of a revised G&N error study for the 501 mission are given here. This study was primarily concerned with the effects of IMU component uncertainties on trajectory uncertainties for two update cases. These were:

- Navigational update 5 minutes before injection burn ignition (2nd SIVB burn). Referred to as update 1 in tables.
- 2) Navigational update 13 minutes before 2nd SPS burn ignition (22.2 min of free-fall coast to 400,000 ft). Referred to as update 2 in tables.

The case where update was made 20 minutes before injection burn ignition (considered in the previous revision) was not included in the present study, since the $T_{\rm ff}$ uncertainties for this case were not markedly different from the update 1 case.

The simulation of the state vector, or navigational R, V update, included the effects of tracking uncertainties. Updating did not apply to the alignment of the IMU Stable Member, since the SM is not realigned during the 501 flight.

The error studies assume a prelaunch Stable Member orientation as shown in Fig. 7.1. \underline{X}_{SM} is up along the local vertical at launch instant, while \underline{Z}_{SM} is horizontal down-range at the nominal azimuth. The gyro and accelerometer input axes are colinear with Stable Member axes.

Block 1 IMU uncertainties were assumed for these studies (see section 7.9 for data). These were the same as those assumed for the previous revision of July 1966, with one important exception: 3-meru bias drift uncertainty is used in this error study, whereas in the previous revision 2-meru bias drift was inadvert-ently used.

7.2 Significant Results of Error Study

Of primary concern in the error studies were the effects of IMU uncertainties on:

- 1) Uncertainty in computed free-fall time of flight, $(U)T_{ff}$, to the reentry start altitude of 400,000 feet.
- 2) Flight path angle uncertainty, (U) γ_{AA} , at reentry start.
- 3) CEP at reentry end.

7-1

(Rev. 1 - 12/66)

-CONFIDENTIAE-

X_I, Y_I, Z_I - LAUNCH INERTIAL AXES X_{SM}, Y_{SM}, Z_{SM} - IMU STABLE MEMBER AXES

Note: NOMINAL AZIMUTH 15 72°.

Fig. 7.1 Coordinate Axes for 501 Launch Configuration

Table 7.1 gives these data in summary form. All uncertainties represent the combined effect of 1 σ Block 1 IMU uncertainties and tracking update uncertainties. Tables 7.7 and 7.10 give detailed data on IMU component contributions to (U)T_{ff}. Table 7.13 gives detailed data on contributions to (U) γ_{AA} for the two update cases. The reader should consult Section 7.11 and Fig. 7.2 on the definition used for flightpath-angle uncertainty.

7.3 Accelerometer Inputs to AGC

For normal free-fall flight periods the AGC does not receive acceleration information from the IMU accelerometers. Accelerometer bias has then no effect on AGC inputs.

For the 501 mission AGC programming similar to that for the 202 mission will be used. For the 202 mission the AGC was left sensitive to accelerometer outputs from SIVB cutoff to 1st SPS burn ignition. Correspondingly, for the 501 mission the AGC will accept output ΔV 's from the accelerometers from 1st SIVB cutoff through the whole parking orbit and from 2nd SIVB burn (injection burn) cutoff for about 12 minutes to 1st SPS burn ignition.

After 1st SPS burn cutoff the AGC is then insensitive to accelerometer outputs until 30 seconds before 2nd SPS burn ignition (time of ullage start). The AGC then accepts accelerometer data the rest of the flight including the coast to reentry start.

Table 7.2 gives indication uncertainties before update at 5 minutes before injection burn. These relatively large uncertainties show the effect of the AGC's continuing sensitivity to accelerometer bias while in parking orbit. An update before injection burn ignition is imperative; otherwise, computed $T_{\rm ff}$ uncertainties after the burn would be excessively large.

7.4 Error Table Description

The following tables, summarizing the results of the error studies, are to be found at the end of this section. Tables 7.3 through 7.15 are detailed error tables showing individual contributions by IMU component uncertainties.

- 7.2 Summary of 501 flight uncertainties
- 7.3 SIVB cutoff indication uncertainties
- 7.4 IMU SM misalignments at SIVB cutoff
- 7.5 Injection burn cutoff uncertainties (Update 1)
- 7.6 SPS1 burn cutoff uncertainties (Update 1)
- 7.7 T_{ff} uncertainties at injection and SPS1 burn cutoff
- 7.8 Uncertainties at 13 mins. before SPS2 ignition (Update 1)

7-3

(Rev. 1 - 12/66)

-
2.
r.1
4
B
A
H

	2)			
Uncertainty in	Event	T Update 5 min be Injection Ignitio	iming of Navige 1 efore Burn 20	ational Update Update 13 min 2nd SPS Igniti	e 2 before Burn on
1		IMU Uncert	. Polarity	IMU Uncer	t. Polarity
		Pos.	Neg.	Pos.	Neg.
Computed	Injection burn cutoff	132	131 sec.		I
Free-rai Time of Flight	1st SPS burn cutoff	178	177 sec.	ł	ı
to 400,000-ft	13 min. before 2nd SPS burn ignition	188	134 sec.	0.16	0.16 sec.
Altitude (U)T _{ff}	2 min. before 2nd SPS burn ignition	205	126 sec.	0.17	0.17 sec.
Flight Path Angle, (U) γ_{AA}	Reentry Start (400,000-ft alt)	3.88 (67.7 mr)	2.07 deg. (36.1 mr)	0.177 (3.1 mr)	0.174 deg. (3.0 mr)
CEP	Reentry End (24,000-ft alt)	455.0 n. mi	е	11. 9 n. mil	U

Summary of Significant Uncertainties

(Rev.1 - 12/66)

COT

CONFIDENTIAL

ļ

			Sun	imary of	501 Flight	Uncertair	nties				
				2					Flight Path	T/11)	
	Time		RSS Po	sition Un	cert.	RSS V	'elocity Ur	ncert.	Angle		ff -
Event	from	Update		n. miles			ft/sec		Uncert. (11) \sim	sec sec	s S
	secs		Alt	Track	Range	Alt	Track	Range	IWLAI	Pos	Neg^*
Earth Launch	0		0	0	0	0	0	0	0	0	0
SIVB Cutoff	687.5	No	0.90	4.96	0.39	18.2	78.5	5.7	1	1	
5 min. before	11 106	No	28.5	4.02	112.0	601.9	81.9	208.3	I	1	ł
Ignition	001 111	1 Now	0.10	0.04	0.41	2.6	0.6	0.4	I	•	•
Injection Ignition	11,486	1	0.15	0.11	0.41	4.9	3.9	3.9	I	1	•
Injection Cutoff	11,822		0.56	0.87	0.86	18.0	41.2	23.6	0.57	132	131
SPS1 Ignition	12,518	1	3.37	5.21	3.39	33.1	34.4	23.7	1.20	152	151
SPS1 Cutoff	12,545	r a l	3.52	5.37	3.49	33.8	35.8	24.4	1.20	178	177
	16,000	1	31.11	14.9	27.3	84.3	4.6	38.2	5.07	179	177
Apogee	20,926	1	99.9	11.8	97.4	172.4	10.0	55.4	13.5	179	176
	25,000	1	201.0	3.2	204.1	370.4	15.5	64.2	8.6	182	174
13 min. before SPS2 Ionition	28,906	1 2 Now	355.6 0.02	6.2 0.07	536.3 0.08	$\begin{array}{c} 1840 \\ 0.3 \end{array}$	6.9 0.6	77.4 0.1	25.8 -	188 .16	134
2 min. before		1	329.8	6.4	703.8	3127	10.2	52.4	53.6	205	126
SPS2 Ignition	29, 266	2	0.03	0.07	0.08	0.6	0.7	0.4	j,	.17	.17
SPS2 Ignition	29,686	1 2	312.40.03	6.2 0.07	741.0 0.08	$3469 \\ 0.6$	9.8 0.7	39.20.4	60.9 0.016	208 .17	128 .17
SPS2 Cutoff	29,948	$\frac{1}{2}$	232.7 0.52	$5.1 \\ 0.72$	829.0 0.30	$\begin{array}{c} 4282\\ 26.5 \end{array}$	52.1 35.5	72.0 14.3	$\begin{array}{c}101.0\\0.92\end{array}$	99 2.4	$\frac{77}{2.5}$
Reentry Start		1	89.1	2.4	892.9	4838	61.9	148.0	53.8	1	ı
(at 400,000 ft)	30, 103	7	1,8	2.1	0.4	34.4	33.3	7.0	3.07	•	•
Reentry End (at 24.000 ft)	31,067	1 2	193.3 14.0	35.6 17.3	736.3 2.8	5852 255	170 235	3253 53	1 1	1 1	1 1
100		1		> •	- ;	1	, , ,	, , ,		-]

CONFIDENTI/

TABLE 7.2

* (U)T $_{
m ff}$ for positive and negative IMU uncertainties.

East $\frac{129}{14}\\3254\\53$ North $\begin{array}{c}
 99 \\
 31 \\
 172 \\
 235 \\
 235
 \end{array}$ 4840 34 5852 255 Alt 831.6 0.8 736.5 2.8 East North 326.4 1.9 30.4 17.3 88.8 1.8 193.3 14.0 Alt - 2 7 7 30,183 31,067 Reentry Start Reentry End

J.T.I.A

+F+DE

(Rev. 1 - 12/66) I

-CONFIDENTIAL

- 7.9 Uncertainties at 2 mins. before SPS2 ignition (Update 1)
- 7.10 T_{ff} uncertainties at 13 and 2 mins. before SPS2 ignition
- 7.11 Reentry start uncertainties (Update 1)
- 7.12 Reentry start uncertainties (Update 2)
- 7.13 Flight path angle uncertainties at reentry start (Updates 1 & 2)
- 7.14 Reentry end uncertainties (Update 1)
- 7.15 Reentry end uncertainties (Update 2)
- 7.16 Stable Member drift angles and misalignments
- 7.17 Propagation of Initial Condition Errors from SPS1 cutoff
- 7.18 Propagation of Initial Condition Errors from Update 2 point

All tables for position and velocity uncertainty and for computed time-offlight uncertainty ((U) $T_{\rm ff}$) are for indication uncertainties (i.e. indicated-minusactual). However, Table 7.13 for flight-path-angle uncertainties are for actualminus-indicated flight-path angle.

Most tables give uncertainties relative to local axes at event time. Positive local axes are defined as follows:

Altitude-outwards along \underline{R} at event time.Track-along $\underline{V} \times \underline{R}$ Range-along $\underline{Alt} \times \underline{Track}$

7.5 Initial Error Condition Propagation Tables

The last two tables at the end of this section are given to show how unit initial-condition errors propagate, first, from SPS1 cutoff conditions, and second, from update time 13 minutes before SPS2 ignition. The first table, 7.17, shows how velocity magnitude and angle errors as well as altitude errors propagate during the long coast. The second table, 7.18, shows how unit position and velocity errors propagate from the update 2 point, and may be useful for decisions relative to this update.

7.6 T_{ff} Computation Uncertainties

The uncertainties in computed free-fall time of flight, (U)T_{ff}, were calculated by perturbing the equation for T_{ff} (see Section 5.7) with the position and velocity uncertainties due to each IMU component uncertainty. As indicated in Section 5.7 the approximate equation for T_{ff} is used when $e \ge 0.8$ and $a > 5 \times 10^{7}$ ft. This condition exists at SPS2 cutoff, although it does not exist at SPS2 ignition.

Tables 7.1 and 7.2 give rss data on the effect of IMU component uncertainties on the computation of free-fall time of flight to the reentry start altitude of 400,000 feet. Tables 7.7 and 7.10 give detailed data on contributions to $(U)T_{\rm ff}$ at various event times.

7-6

(Rev. 1 - 12/66)

- NEIDENTIAL

The relatively large increase in $(U)T_{ff}$ between injection burn and 1st SPS burn cutoff is primarily due to the effect of accelerometer bias during the intervening coast. The AGC accepts accelerometer outputs during this time interval.

During most of the long coast the rss uncertainty in $T_{\rm ff}$ (with update 5 min before injection burn) remains almost constant at 178 seconds. The magnitude of (U) $T_{\rm ff}$ is approximately the same for positive and negative IMU uncertainties. However, by the time that Update 2 time is reached (13 minutes before SPS2 burn ignition) the $T_{\rm ff}$ uncertainties for positive and negative IMU uncertainties have diverged considerably as can be seen from Tables 7.1 and 7.2. The prime contributors to (U) $T_{\rm ff}$ during the long coast are X- and Z- accelerometer biases and Y- and Z- gyro bias drift.

7.7 Flight-Path-Angle Uncertainty

Data on flight-path-angle uncertainty at reentry start is given in Tables 7.1 and 7.2. Tables 7.13 gives detailed data on IMU component contributions to $(U)\gamma_{AA}$. Section 7.11 and Fig. 7.2 should be consulted for definitions.

Of primary interest are the data for the Update 2 case. Table 7.13 shows that Y-gyro bias drift uncertainty (NBDY) is by far the most important contributor to the rss uncertainty of 0.175° (3.05 mr). Positive NBDY is responsible for 0.172° (3.01 mr), while negative NBDY is responsible for -0.168° (-2.94 mr).

Table 7.13 shows that for NBDY the flight-path-angle uncertainty relative to spacecraft actual location axes at nominal time, $(U)\gamma_{AI}$, is 0.96 mr. At nominal time, assuming that BDY is the only uncertainty, the S/C is 10,725 feet above the nominal altitude of 400,000 feet. The coefficient, $d\gamma/dAlt$, relating change in flight-path angle to altitude change is 0.188 (10^{-3}) mr/feet. The change in path angle from nominal time to the time that the S/C actually reaches 400,000 feet is then 2.02 mr (0.116 deg). Summing this with (U) γ_{AI} gives an approximation to (U) γ_{AA} of 2.98 mr. This is close to the (U) γ_{AA} given above, and clearly shows the altitude dependency of (U) γ_{AA} for this situation.

7.8 Navigation Update Conditions and Uncertainties

Because the AGC accepts accelerometer outputs during the parking orbit, by the time of injection burn ignition relatively large position and velocity indication uncertainties develop due to the presence of accelerometer bias uncertainties. Because of this, a navigational update before injection burn ignition is provided for. For the error studies an update 5 minutes before injection burn ignition was assumed.

A 2nd navigational update 13 minutes before the 2nd SPS burn ignition (or 22.2 minutes of free-fall coast to 400,000-ft altitude) is also made. At this time

7-7

CHTIDENTIA

(Rev. 1 - 12/66)

CONFIDENTIAL

the T_{ff} to $T_{ff(min)}$ comparison is started, where $T_{ff(min)}$ is nominally 2 minutes before SPS2 burn ignition.

At both update times the uncertainties in position and velocity are reduced to those represented by the tracking update uncertainties.

The navigational updates would be performed on the basis of orbit computations made using observations by the MSFN (Manned Space Flight Network). The tracking-station-computed position and velocity vectors would be subject to uncertainties because of noise and bias in tracking measurements.

In this IMU error study, simulation of tracking update uncertainties was based on data available in MSC Internal Note No. 66-FM-46, "Error Analysis of MSFN Tracking Data for AS-501" by P.T. Pixley and M.L. Alexander. Tracking uncertainty covariance matrices for times just before injection burn ignition and the 2nd SPS burn ignition were available in this report. The one-sigma position and velocity uncertainties for the two update times relative to local vertical axes were as follows:

	Position Uncertainty (in nautical miles)		Veloc	Velocity Uncertainty (in ft/sec)		
	Alt.	Track	Range	Alt.	Track	Range
5 min before Inject. Burn Ignit.	0.10	0.04	0.41	2.6	0.6	0.4
13 min before 2nd SPS Ignit.	0.02	0.07	0.08	0.3	0.6	0.1

In the error tables, after updating time, the uncertainties include the effects of both navigational update and IMU uncertainties.

7.9 IMU Errors and Uncertainties

The AGC will be able to provide compensation for the measured average values of the following IMU component errors:

- 1) accelerometer bias error (ACB)
- 2) accelerometer scale factor error (SFE)
- 3) gyro bias drift (NBD)
- 4) gyro input axis acceleration sensitive drift (ADIA)
- 5) gyro spin reference axis acceleration sensitive drift (ADSRA)

Since the average IMU errors will be compensated by means of AGC programs during prelaunch and in flight, it is the actual unpredictable deviations from the measured average errors that constitute the IMU component uncertainties.

The error tables here employ a definition of scale factor error whose polarity is effectively the reverse of that formerly used. The new definition is being adopted, since it is consistent with that employed in component and systems tests for some time past.

7-8

(Rev. 1 - 12/66)

CONFIDENTIAL

CONFIDENTIAL

The Block I IMU error uncertainties (see also MEI No. 1015000-Part I) for the present error studies are as follows:

	11	aput Axi	S	
	x	<u>Y</u>	$\underline{\mathbf{Z}}$	Units
Accelerometer bias (ACB)	0.40	0.40	0.40	cm/sec^2
Accelerometer scale factor (SFU)	150	150	150	PPM
Accelerometer nonlinearity (NC)	10	10	10	$\mu g/g^2$
Gyro bias drift (BD)	3	3	3	meru
Gyro input axis accel. sens. drift (ADIA)	8	8	8	meru/g
Gyro spin axis accel.sens.drift (ADSRA)	5	5	5	meru/g
Gyro acceleration squared sens. drift	0.2	0.2	0.2	$meru/g^2$
Accelerometer I.A. misalignments				
Non-orthogonality X to Z	0.14	-	-	\mathbf{mr}
Non-orthogonality X to Y	0.14	-	-	\mathbf{mr}
Y about X _{SM}	-	0.10	-	\mathbf{mr}
Gyro I.A. misalignment				
About SRA	0.50	0.50	0.50	mr
About OA	0.50	0.50	0.50	mr

Block I One-Sigma IMU Error Uncertainties

Certain IMU component uncertainties affect both the pre-launch alignment of the Stable Member and the in-flight computation by the AGC of position and velocity. The accelerometer bias uncertainties affect the vertical erection of the Stable Member about Y_I and Z_I (see Fig. 7.1). The gyro bias and acceleration sensitive drift rate uncertainties affect the azimuth alignment of the SM through their effect on the gyro-compassing loop during pre-launch alignment. Table 7.4 shows the effects of the various gyro drift uncertainties on azimuth alignment uncertainty. This table shows that the rss azimuth alignment uncertainty is 3.5 mr.

The IMU uncertainties affecting pre-launch SM alignment and the in-flight navigation computations are assumed to be correlated. Their effects on position and velocity uncertainties are accordingly summed arithmetically in the error tables.

7.10 Stable Member Orientation

The orientation of the IMU Stable Member axes (X_{SM}, Y_{SM}, Z_{SM}) relative to launch inertial axes (X_I, Y_I, Z_I) are shown in Fig. 7.1. The X, Y, Z accelerometer and gyro input axes are colinear with corresponding Stable Member axes. The launch inertial axis Z_I is in the horizontal plane of launch instant and oriented at the nominal launch azimuth of 72[°] from north. The $X_I - Z_I$ plane will be the

7-9

(Rev. 1 - 12/66)

initial pitch plane as well as initial reference trajectory plane. The Stable Member is not realigned during flight.

Table 7.16 gives data on SM drifts and misalignments throughout the flight. Table 7.4 gives detailed data on SM misalignments at SIVB cutoff.

7.11 Flight-Path-Angle and Altitude-Rate Uncertainty Definitions

Fig. 7.2 defines the three flight-path-angle uncertainties, $(U)\gamma_{AI}$, $(U)\gamma_{AIN}$ and $(U)\gamma_{AA}$. Data for $(U)\gamma_{AA}$ are given only for reentry start (at 400,000-ft altitude) in the summary tables, 7.1 and 7.2, since the flight-path-angle uncertainty with the spacecraft actually at 400,000-ft altitude is the desired parameter. For all other times during the 501 flight, data are given for $(U)\gamma_{AI}$.

As the range angle uncertainty, (U)Rge/R, increases (as it will for prolonged, non-updated orbital missions, since (U)Rge is unbounded), the uncertainty, (U) $\gamma_{\rm AIN}$, will increase correspondingly, since $\gamma_{\rm AIN}$ is measured relative to the nominal horizontal axis.

Data in all error tables for RSS position and velocity uncertainties are given relative to nominal local vertical axes (see Fig. 7.2). These data may be used to compute $(U)\gamma_{AIN}$. Unless appropriate transformations are made, $(U)\gamma_{AI}$ can not be computed from the tabulated position and velocity uncertainties.

7.12 Error Computation Procedure

Position and velocity uncertainties given in the tables were computed as follows. Approximate error equations were derived for the effect of each IMU component error on trajectory position and velocity. The assumptions were: 1) that the errors were small relative to the parameters being measured, and 2) that the IMU component errors were statistically independent of each other. The error equations took into account the effect of the IMU errors on gravity vector computation. The computation program incorporating the error equations require nominal trajectory acceleration and position vectors (relative to fixed inertial axes) as inputs at discrete time intervals. The nominal trajectory itself was generated in a separate program. At significant events, such as SIVB cutoff, detailed error printouts were made giving the position and velocity uncertainties due to each IMU uncertainty relative to nominal local vertical axes.

7.13 Error Table Explanation

To make up a one-page error table format some of the more insignificant error sources were omitted. These included certain accelerometer input axis misalignments and gyro acceleration and acceleration squared sensitive drift uncertainties.

7-10

(Rev. 1 - 12/66)

Fig. 7-2 Flight Path Angles

7-11 (Rev. 1 - 12/66)

. .__

CONFIDENTIMO

The principal IMU component uncertainties are denoted by the following abbreviations:

- ACB accelerometer bias. Units are cm/sec^2 .
- SFU accelerometer scale factor uncertainty. Units are parts per million.
- NC acceleration squared indication uncertainty. Units are micro-g per g^2 (10⁻⁶g/g²)
- NBD gyro null bias drift uncertainty. Units are meru (milli-earth rate units)
- ADIA gyro input axis acceleration sensitive drift. Units are meru/g.
- ADSRA gyro spin reference axis acceleration sensitive drift. Units are meru/g.
- AD gyro acceleration squared sensitive drift. Units are meru/g²
 (e.g., ADIXX gyro input axis acceleration squared sensitive drift)

The symbols X, Y, Z denote the input axis of the IMU gyro or accelerometer to which the uncertainty applies. IMU component input axes are identical with SM axes.

Initial SM Misalignments (Uncorrelated) - The misalignment uncertainty about X_I (azimuth) of 0.5 mr is primarily due to gyro input axis misalignments relative to SM axes. This misalignment as well as those about Y_I and Z_I are independent of the SM misalignments caused by the effect of IMU component uncertainty on SM vertical erection and azimuth alignment. These pre-launch SM misalignments are partially given elsewhere in the error tables. For SIVB cutoff, Table 7.4 gives the individual SM pre-launch alignment uncertainties.

The subscript "INIT", used with some of the IMU uncertainties such as ACBX, denotes those uncertainties (position and velocity) due to the initial prelaunch SM misalignment caused by the particular IMU uncertainty. The subscript "FLGT" denotes those uncertainties due to the effect of the IMU uncertainty on inflight navigation computations. For gyro drift terms it also includes the effect of gyro drift since launch. The subscript "COMB" denotes the arithmetic sum of the above two effects.

7-12

(Rev. 1 - 12/66)

CONTRETATIONE

TABLE 7.3 SIVB Cutoff Indication Uncertainties

3.244 MR.) 0.086 0.688 0.000 2.952 0.052 0.000 3**.**988 3**.**988 0.056 0.064 0.308 0.018 1.138 FT/SE 1.554 0.030 7.138 7.146 0.250 0.887 1.706 0.003 0.127 0.000 0.118 0.437 000 000 0.170 0.177 100.0 687.542 SEC) 0.001 0.001 RANGE 0.016 1 0.000 0 2.215 0 7 MR.ABOUT YSM) AXES) Z . . **802** 71.747 0.000 MR.) TO NOM. 27.542 SEC (JNCERTAINTIES DUE TO 11.076 0.000 0.005 0.000 0.050 0.006 23.364 0.139 0.042 0.042 3.051 8.039 0.000 0.339 0.187 0.121 0.123 0.121 0.019 00000 4.987 4.846 1.653 6.500 71.887 16.530 0.014 0.002 23.357 -0++0-MR.. (REL. t 8 8 UUE TO ADSAY 1.054 TO ACBZ VELOCITY U HR. 11 MIN. 0.061 0.121 0.059 2.070 0.000 1.788 00000 0.192 0.194 0.356 1.732 1.375 0.001 0.252 0.000 0.168 0.581 0.003 4.282 0.022 1.096 0.003 3.465 0.007 3.996 0.033 00000 10.165 0.165 9.492 0.073 E60 • 1 0.249 ALT. BDΥ ВUE 0 ΨK. 8 1 8 2.5M. DΩF 1.4 5 0.100 MR.) 575.5 . JSITION AND VELOCITY UNCERTAINTIES ALONG LOCAL AXES AI TIME FROM LAUNCH = POSITION UNCERTAINTIES IN FEET VCERT. ONE SIGMA (MEL. TO NOM. AXES) 0.583 V.407 MR.ABOUT 42., 902-9 AD4AX 0 8°619°3 37.2 437.2 0.218 v 0.0 1-02.9 0.01± 0.0 20.5 5•0 25•5 4°40; 68.2 46.94 421.8 0.0 **6**.9 1402.9 23.6 31.9 8.3 2015.6 98.9 455.4 1.4 344.5 **0**•4 26.5 3.6 45.7 1003.7 1448.7 : RANGE ×

 4BOUT XI
 0.500 MR
 54.9
 4279.3

 4BOUT YI
 0.025 MR
 163.0
 0.8

 4BOUT ZI
 0.025 MR
 1163.0
 0.8

 4BOUT ZI
 0.025 MR
 134.6
 134.6

 4BOUT ZI
 0.025 MR
 134.6
 0.8

 4BOUT ZI
 0.025 MR
 134.6
 0.2

 4BOUT ZI
 0.141 MR
 1284.3
 0.0

 X
 4BOUT Z
 0.141 MR
 0.0

 Y
 4BOUT Z
 0.100 MR
 10.9

 Y
 ABOUT Z
 0.100 MR
 10.9

 Y
 ABOUT Z
 0.100 MR
 0.0

 Y
 ABOUT Z
 0.100 MR
 0.0

 2 α Ω \$. 1 1 BUB ALT. TRACK ABOUT LAUNCH INERTIAL AXES 2 = DUE ł 0°0 1872.3 455.9 TRACK 16.0 0.0 **4**•0 337.2 16.0 44.2 30.0 19.4 2.3 * 43.2 16.6 2923.9 27772.4 354.8 27640.9 LCH.S.M.MLMS.ABT.XI 2197.1 726.7 2328.2 9023.8 9024.3 131.4 6217.3 14.1 3 LCH.S.M.MLMS.ABT.XI . . I ŧ 5.6 29.7 115•8 397•0 0.0 29.5 0.0 24.0 7.067 4.3 0**•**5 59**•**9 5135.7 85.2 79.6 3135.7 8.1 2659.4 1360.3 4019.8 934.8 596.4 71.6 281.1 356.6 1.7 0.2 VBDZINIT 3.0 MERU 35 VBDZFLGT(0.150 MR.DRIFT - 35 VBDZCOMB SINCE LAUNCH) 35 VBDZCOMB SINCE LAUNCH) 35 VR0 ACC,SENS.DRIFT (INIT.EARTH LC ADIAXCOMB 8.0 MERU/G - 79 ADIAXCOMB 8.0 MERU/G - 57 ADIAXCOMB 9.0 MERU/G - 57 ADIAXCOMB 9. VCERT. ONE SIGMA JURCE JNCERTAINTY VITIAL 5.4. MLMS. (UNCORREL.) (INIT.EARTH 0.400 CM/5.50 MBDYFLGT(0,150 MF,DRIFT NBDYFLGT(0,150 MP,DRIFT NBDYCOMB SINCE YRO BIAS DRIFT (INIT-E NBDXINIT 3.0 MERU NBDXFLGT(0.150 MR.DRIFT 0.400 CM/5.50 0+400 CM/5+50 SINCE LAUNCH) MG/650 MG/G50 Mdd X d d Mdd CCEL.SQ.I VD.UNCERT. NCXX 10 MG/G NCZZ 10 MG/G CCEL.SCALE FACTOR SFUX 150 PI SFUY 150 PI 150 ACBXFLGT ACBXCOMB ACBYINIT ACBZINIT ACBZFLGT ACBZCOMB NBDXCOMB **VCBYCOMB** ACBX INI 7 SFUZ

5.716 5.716

78.497

8.227

2345.2 U.385

30153**.**7 4.962

0.897

SS UNCERT.(FT AND FT/SEC)
SS UNCERT.(N.MI.AND F1/SEC)

5454.7

LTI

Cutoff
۷B
S
Ħ
Misalignments a
e Member
tabl
IMU S
TABLE 7.4

>	
-	
<	
_	
_	
-	
2	
4	
-	
2	
L4	
α	
C	
_	
-	
2	
-	
~	
\sim	
a a	
A R	
MAR	
MMAR	
MMAR	
AMMAD	
SUMMAR	
SJMMAR	
SUMMAR	
S SJMMAR	
ES SJMMAR	
LES SJMMAR	
GLES SJMMAR	
IGLES SJYMAR	
NGLES SJMMAR	
ANGLES SJMMAR	
ANGLES SUMMAR	
L ANGLES SJMMAR	
T ANGLES SUMMAR	
FT ANGLES SUMMAR	
IFT ANGLES SJMMAR	
ALFT ANGLES SUMMAR	
NRIFT ANGLES SUMMAR	
URIFT ANGLES SJMMAR	
DRIFT ANGLES SJMMAR	
O DRIFT ANGLES SJMMAR	
4D DRIFT ANGLES SJMMAR	
ND DRIFT ANGLES SUMMAR	
AND DRIFT ANGLES SUMMAR	
AND DRIFT ANGLES SJMMAR	
, AND DRIFT ANGLES SJMMAR	
AND URIFT ANGLES SUMMAR	
IS. AND URIFT ANGLES SJMMAR	
MS. AND URIFI ANGLES SJMMAR	
LMS. AND DRIFT ANGLES SJMMAR	
ALMS. AND DRIFT ANGLES SJMMAR	
MLMS. AND DRIFT ANGLES SUMMAR	
•MLMS. AND DRIFT ANGLES SJMMAR	
M.MLMS. AND DRIFT ANGLES SUMMAR	
M.MLMS. AND DRIFT ANGLES SUMMAR	
". ". MLMS. AND DRIFT ANGLES SJMMAR	
5.4.MLMS. AND DRIFT ANGLES SJMMAR	
5.4.MLMS. AND DRIFT ANGLES SJMMAR	
- S.M.MLMS. AND DRIFT ANGLES SJMMAR	
IL S. M. MLMS. AND DRIFT ANGLES SJMMAR	
AL S.M.MLMS. AND DRIFT ANGLES SJMMAR	
IAL S.M.MLMS. AND DRIFT ANGLES SJMMAR	
TIAL S. M. MLMS. AND DRIFT ANGLES SJMMAR	
ITIAL S.M.MLMS. AND DRIFT ANGLES SJMMAR	
IITIAL S.M.MLMS. AND DRIFT ANGLES SJMMAR	

					LIXA CAUC	0.00, AYI=	0.00, A254=	0 DEG) (1=	687.5 SECSI
JNCERT.	ONE SIGMA		MLM.	ANGLE ABOUT INF	HITAL AXES				
SURCE	JNCERT . VALU	ų		MR.			TILM. ANGLE AL	BUUI LOCAL VEF	NTICAL AXES
INITCH			I × I	ΥI	12		ALT	TEAC	
		AFL. ARUU	1						
Ιλ	0.025 MR			0.000	0000		0.4504	- 0.0027	- 0.2169
12	0.025 MR	1		0620.0	000000		0.0002	0.0249	0.0002
[NIT.5.M	MLMS.DUE TO	INU ERROR	EFFECTS (DU LANTH LAUNCH	U. U. U. 50	A. TCALMERT	0.0108	- 0°0003	0.0225
ACBX	0+0 CM/S.	ر در	00000						
ACBY	0.40 CM/S.		0000	00000			0.000	0.000	0.0000
ACBZ	0.40 CM/S.	۲. ۲.	00000		0.04078		0.1769	- 0.0061	0.3674
					00.00		- 0°0046	- 0.4078	- 0.0045
XDEN	3.0 MERU		0.2187	0.0000					
VODY	3.0 MERU		1.0543		00000		0.1971	- 0,0011	0°0349
NADZ	3.0 MERU	- 11	2440		00-00-0		0.9499	- 0.0057	- 0.4574
		,			00~0		2 . 9236	- 0.0177	- 1.4077
AUIAX	8.0 MERU/C	5	0.5833		00110				
ADSRAX	5.0 AERU/C		00000				0.5256	• 0.0031	- U.2530
ADIAY	8.0 MERU/C				0000.0		0,0000	0.0000	0.000
ADSRAY	5.0 MERU/C				0000		0.0000	0.0000	0.0000
ADIAZ	B.O. MERING			0.0000	0000		0,000	0.0000	0.0000
ADSRA7		,		00000	0000		0.0000		
		ت ۲	• 0000	0.0000	00,000		0.0000	0000000	0.000
SS INIT	S.M.M.MS.	Ċ	5062						
(AT TRAJ	ECTURY START)	1	7400.	0.4086	0.4.986		3 . 1622	0.4090	1.5641
JRIFT ANG	LES DUE TO GY	A TAIFC OK'	FTER TRA	JECTORY STARI					
XORN	3.0 MERU	0	•1502						
VOON	3.0 YERU	o c	0000				0.1353	- 0.0008	- 0.0651
NBUZ	3.0 YERU			2007 0	0000		0.0017	0.1502	0.0016
				0000	20c1•0		0.0651	- 0.0022	0.1353
ADIAX	8.0 MERU/G	C	.1775						
ADSRAX	5.0 MERU/G	C	0000				0.1600	- 0°0006	- 0.0770
ADIAY	8.0 MERU/G				00~00		0.000	0.0000	0.000
ADSRAY	5.0 MERU/G				0000 • 0		0.000	0.000	0.000
ADIAZ	R.O MFRII/G				00000	•	- 0.0032	- 0.2824	- 0-0031
ADSRA7	SLO MEDIVE			00000	0.4220		U.1960	- 0.0068	
		D	• 0000	0.0000	00,000		0.000	0.000	
ADIXX	0.2 MEHU/GS	ں ر	.0061	0,000					
AUSYY	0.2 MERJ/65		0000				0.0055	- 0°0000	- 0.0026
ZZICA	0-2 MF R.1765						0.0002	0.0181	00000
		,		0000	1870*0		0.0078	0.0002	0.0163
355 URIFT	ANGLE	0	• 2326	0.3204	0.4166		0.2944	3005 0	
									114400
ערהקור אי	00 ^m LM	ņ	• 511 9	0.5193	0.6478		3.1758	0.5197	1-6252

7-14

(Rev.1 - 12/66)

ENTIAL

CONFIDENTIAL

A
(Update
Uncertainties
Cutoff
Burn
Injection
TABLE 7.5

۱ ۱

õ
~
. · •
_
-
2
Ξ
•
1
-
Ŧ
-
n
- <u>†</u>
7
2
Ā
Ĺ.
1
Ô
1
*
لى ا
Ξ
Ļ
-
-
S
- ĩú
×
1
1
Ľ.
.7
~
<u></u>
Ś
μU
ALU
S ALU'
ES ALU'
'IES ALU'
ITIES ALU
I TIES ALU
CITTES ALUN
121 JTIES ALU
RELUTES ALU
EXILITIES ALU
ICE 41 2 1 4 1 ES ALU
NCE TAL TIES ALU
UNCERTAL ITLES ALUM
I UNCERTAL ITLES ALUM
TI UNCERTAL ATTES ALUN
IT UNCERTAL ITIES ALUN
CITY UNCERTAL ITLES ALUN
UCITY UNCERTAL ITLES ALUN
LUCITY UNCERTALITIES ALUN
/ELUCITY UNCERTAL ATTES ALUN
VELUCITY UNCERTALITIES ALUN
> VELUCITY UNCERTAL ITLES ALUM
NU VELUCITY UNCERTAL ITLES ALUN
AND VELOCITY UNCERTALITIES ALUM
AND VELUCITY UNCERTALITIES ALUN
N AND VELOCITY UNCERTALITIES ALUN
ON AND VELOCITY UNCERTAL ITLES ALUN
TION AND VELOCITY UNCERTAL TIES ALUN
ITION AND VELOCITY UNCERTALNTIES ALUN
SITION AND VELOCITY UNCERTALITIES ALUN
DSITION AND VELOCITY UNCERTALITIES ALUN

POSITION AND VELOC	IT' UNCERTAI	JTIES ALU	VG LOCA	L AXES AL	T1≅E F 1.	HOM LAUNCH	= 3 = 1 K •	17 MIN.	1.758 SEC (11821.	759 SEC) E1/SEC
JACERT. DVC SID	4.4				μxΕυ)		•		(REL. TO YOM	• AXES	
SOURCE JACERTAL	V 1 V 000 1 V 1 V	ALT.		TRACK		RANGE		ALT.	TRACK	l	RANGE
JVI/IAL 3646 74500 A 2011 VI O E00 V		ACUUT LA.		EKIJAL AAG	7.1 1.1	46 J		1 646	015 7		000 0
ADUT YI D. D75	- 	0 • C ~ V					ı	- 00 - 0	1.071		0.187
A30UT ZI 0.025	• •		ı			12.7	•	0.43	0.012		0.080
ACCEL-INFUL PXIS ML	NS. (Y ABOUT	0 = 7	E ALOUT	Y = 0 • 2	ABUUT	1 0 C L 0 = X	4R.)				
X AROUT Y U. 141	1 1	15.6		16.5		146.3	•	0.566	0.121		1.071
X ABOUT Z 6.141	.	33.7		7.5		64.9	ŀ	0.243	0.051		0.457
Y AROUT X G.100	• 1	0.6		115.4	ı	13.4	1	0.004	0.843	•	0.098
ACCEL.JIAS (INIT.E	EANTH LAUNCH	Sele MLMS	•	JUE TO ACE	ÞΥ 0.4	UT MR.AJUT	T 25M, DUE	TU AC32	-0.407 HR.A	HULT Y	5M)
ACBXIMIT		0 0		0. €		0.0		0.000	00000		0.000
ACBXFLGT 0.40C C	4/S.SQ	1368.5	ı	261.4	1	2334.9		4.742	- 0.786	•	7.07.7
ACBXCOMB		1366 . 5	ł	261 . 4	ı	2334.9		4.742	- 0.786	ł	7.077
ACBYINIT	•	96.3	1	162.0		206.5	ı	0.702	0.211		1.311
ACBYFLGT 0.400 C	- Cc.s/h	10.2		2514.7	ł	294.0	•	0.025	7.572	1	0.886
ACBYCOMB	·	106.5		2352.7	ı	85.4	1	0.727	7.783		0.425
ALBZ1W11		43.9	ł	58.6	ı	501 . P		1.544	- 0.346	1	3.052
ACEZFLGT 0.400 C	0.5.23	2515-8		136.5		1044.7		8.543	0.415		3.060
ACHZCOME		2563.4		80. I		542 8		10-137	0.068		0.008
ACCEL.SCALE + ACTUR											
SFUX 150 PF	- 20	32.6		6 • ¹		60.8	ı	0.012	- 0.002	•	0.017
	- ¹	4 •0		76•2	ı	8.9	ı	0.002	0.539	1	0.062
SFUZ 150 PS	•	159.7	i	7 •6	•	76.1	1	1.194	- 0.071	1	0.557
ACCEL-SG. I ND-UNCER	•	,									
NCXX TO NC	/ 65 0	l.3	i	0.4	ı	2•5		0.010	- 0.02	•	0.020
VCZZ 10 PG	/65U	7.9		t		±•€		0.070	*00*0	,	0.033
JY 40 BIAS DRIFT (INITOEATIA LO	.H.S.4.ML	15.Api.	AI - DUE	XCa CI	0.218 41.	, 2UE 10 B	υY05	4 MR., DUE T	0 80Z	3.244 MR.)
NBUXINIT 3.0 M	- RU	102.3		258.4		19.8		0.736	1.889		0.131
VAUXFLGT (2. 585 P.4.	DH1F1	1 4891		3002.0		229.8		8.603	22.079		1.530
VOUXCOMB SINCE LA		1290.4		3260.4		249.6		9.340	23,969		1 . 661
NADYINIT 3.0 ME	L A J	493.0		1244.5		95 . 5		3.551	9.105		0.631
VEDYFLGT (2.585 MA.	- DHIFT -	285.2		362.4		3124.5	1	10.084	2.166		19.068
VEDYCONE SINCE LI	(HOLICH)	207.8		1606.0		3220.0	ł	6.532	11.272		19.720
VEDZIALT 3.0 ME	.RU	1517.5		3829 . 8		293.9		10.929	28-024		1-944
NADZFLGT(2.285 MA.	- T-11-0.	999.9	•	998°2		1298.1	ı	4.397	1.426		8.207
V3DZCOMB SINCE LF	AU ICH)	917.5		2831.4		1592.1		6.532	29.450		10.152
SYRD ACC SENS DRIFT	I CINIT.EAR	H LC4.5.	1	Ab1.x] - U	UE TO /	ADIAX 0.58	33 MK., UU	E TO ADS	AY 0.000 MR	-	
AJIAXCCM3 8.0 ME-	۲ <i>.</i> ۲. ۲. ۲.	367.5		430.J		70.9		2.646	6.802		0.469
ADSAYCOM3 5.0 MER	<u 6<="" td=""><td>47.6</td><td>ł</td><td>43.⁸</td><td>•</td><td>378.8</td><td></td><td>1.428</td><td>- 0.273</td><td>1</td><td>2.420</td></u>	47.6	ł	43. ⁸	•	378.8		1.428	- 0.273	1	2.420
AJIAZCCM3 N.O HER	2076 - ·	117.1	ı	175.4		251•2	•	0.907	0.502		1.675
355 UNCERT. (FT ALD	FI/SEC)	3351.7		5301.4		4355.7		17.644	41-187		23.575
355 UNCERT (N.MI.A.	10 F1/SEC)	0.551		0.874		0.716		17.694	41.187		23.575
						1					
RSS_UNCERI_ (N_MI_A) (INCL+IK5_JPDATL_	D FI/SEC) JNCERT.)	0.561		c18.0		0 . 856		17,958	41 . 190		23.581

IFIDENTIAL

7-15

(Rev. 1 - 12/66)

TABLE 7. 6 SPS1 Burr	n Cutoff Unc	ertainties (Update 1)							
POSITION AND VELUCITY UNCERT	FALVTIES ALC	ING LOCAL	AXES AT AINTLES	TIME FF	ROM LAUNCH = FEET	u HR.	29 MIN.	5.303 SLC (1. JNCERTAINTIES	2545.3 IN	04 SEC) FT/SEC
UNCERT, ONE SIGMA	. T. A.	(kel. T	O NOM. P	(SES)	RANGE		ALTS	(REL. TO NOM. TRACK	AXES)	RANGE
INITIAL SOUCH METAL	-) ABOUT LA	NUNCH INER	TIAL AXE	ري ارز						
ABUUT XI 0.500 MR	1538.2	ά	372 • U	•	839.03		2.025	9 t C t	ı	
ABOUT YI 0.025 YK About Zi 0.025 yr	13.1) • / • •		124.1		010	0.022		0.070
ACCEL INPUT AXIS MLMS. (Y AB	30UT Z = 0.	Z ALDUT Y	= 0 • 7	ABUUT)	M = 0.100 MR	~				ļ
X ABOUT Y 0.141 YR	168.2		64.2		948.3		0.160	C•095		0.974
X ABOUT 2 0.141 4R	10.6		40 . V		407.7		0.062	0.039		0.404
Y ABOUT X 0.100 VR	- 60.5		658•1 - +0_^[+	11/200	7.5M DIL		0.000 0.000 0.000 0.000		0.049
ACCEL.BIAS (INIT.EARTH LAUN	40H 5•%• 40H	· · · · · · · · · · · · · · · · · · ·		0.4(000.0
		-	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			I	1.436		I	14.970
ACBAFEG 0.400 CAUSAGU	1123.3	••	065.1	1	11399.5	•	1.436	- 1.415	•	14.970
A C R V T N T T	214-6		0.91		1183.3		0.171	0.361		1.144
	037.1	0.1	357.6	ı	846.3	1	1.588	13.854		1.077
	722.5	101	376.1		337.0	ı	1.417	14.216		0.066
ACBZINIT	- 751.9	ı	277.4	1	2597.3	ł	0.593	- 0.261	•	2.707
ACBZFLGT 0.400 CM/S.53	14218.7		574.2	ł	5072.7		24.975	0.776	ł	7.421
ACBZCOMB	13465.7		296• <u>0</u>	ı	7670.0		24,381	0.514	ł	10,128
ACCEL SCALE FACTOR)) l		- c		r u	1	0.042		1	0.062
			- *	i		•			1 1	
		,	4 היה ביו	•	0 + + C		0.004		•	
	- 1221 -	•			240.6	I	612 • 7			
	[I	1 - 1	ł	17.9	ı	0.003	- 0.001	ł	0.018
	73.67		7.0	ı	22.2		0.113	0.003	1	0.030
ALLE LO MULTER (INITERSI-	H LCH S. V. M	IX.TUN.SW.	- DUE	XUa Cl	0.218 42.	DUE 10 1	30Y 1.05	4 MR., DUE TO	BDZ	3.244 MK.)
	673.0	· -4	475.3		367.2		1.030	1.489	ı	0.445
NBDXFLGT(2.744 MR.DRIFT	7849.9	17	231.4	•	4283.6		12,027	17.470	1	5.201
NBDXCOMB SINCE LAUNCH)	8523.0	18	106.0	I	4650 . 8		13,058	18,960	I	5.647
UATA 0.5 TIMIYUAN	3243.7	7	,110.	1	1769.9		4.966	7.179	ı	2.145
Nanvel CT (2 / 44 NR-DRIFT	4405.46		736.2		16301.6		3.542	1.636		17.078
NBDYCOMB SINCE LAUNCH)	1850.3	ο ε ι	846. 7		14531.7		8.508	8.816		14.932
UNERU 3.0 MERU	9983.1	21	6.48 8	ı	5447.2		15.284	22.097	ł	6.602
NBDZFLGT(2.744 MR.DRIFT	1338.8		199.7		7400.1		1.005	2.383		7.170
NBDZCOMB SINCE LAUNCH)	11321.9	22	084.4		1952.9		16.350	24.480		0.567
SYRD ACC.SENS.DRIFT (INIT.	EARTH LC4.5	. 4. MLNS. AB	I•XI - [JUE TU	ADIAX 0.583	MK.	JE TO AJS	AY 0.000 4R.	~	609
ADIAXCOMB 8.0 REAU/G	2415.	n	312.6	1 1	1314.4	I	1.044 044		•	1.070 1.087
AUSAYCOMB DOUTERUVG	- 409.2	I	205.4		1504.0		0.210	- 0.658	1	1.477
	1		s 					1		
255 UNCERT.(FT AND FT/3EC) 255 UNCERT.(N.M.AMD FT/3EC)	21352 . 2	32	:636.8 5.371		20884•3 3•437		33.651 33.651	35.809		24 .382 24 .3 82
<pre>\$\$\$ UNCERT.(".MI.AND F1/SEC) \$1000.TK3.UPDATE UNCERT.)</pre>) 3.515		5.37 <u>1</u>		3.492		33,800	35,811		24.400

7-16 (Rev.1 - 12/66)

TABLE 7.7a T_{ff} Uncertainties at Injection Burn Cutoff (Update 1)

E.I

TABLE 7. 7b T_{ff} Uncertainties at SPS1 Burn Cutoff (Update 1)

)

SEC.	SÉC.	SEC. SEC.	sec.
0.107 0.010 0.377	178.372	0.107 0.009 0.377	177.281
NCXX- NCYY- NCZZ	RSS	NCXX NCYY NCZZ-	S S S S S S S S S S S S S S S S S S S
0.532 0.408 6.506	0.078 0.796 0.316	0.532 0.408 6.510	U.078 U.796 O.316
SFEX SFEX SFEZ	401XX 405YY 401ZZ	SFEX SFEX SFEL	401XX- 405YY- 40122-
16•931 73•217 56•147	0•223 13•160 0•315	16•956 12•636 25•777	0•223 13•176 0•314
S) ACBZI - ACBZF ACBZF ACBZT	AJSAXI AJSAYT- AJSAZT-	5) ACBZI ACBZF - ACBZF -	4)54X 1- 4)54Y 1 4)54Z 1
CHS (SEC) 6.610 12.206 5.602	9.463 1.033 8.473	DRS (SEC 0.606 12.272 5.659	9.444 1.033 8.467
ACUYE EKRO	AULAXT AULAYT- AULAYT-	ALIVE EKRO ACUYI - ACUYE ACUYE	4014×T- 4014×T 50142T-
W FCR PGS 0.000 79.347 79.347	39.227 41.447 80.409	N FOR NEG 0.000 75.917 79.917	38.x94 41.291 60.052
DMPJTATIC ACBXI ACBXF- ACBXF- ACBXT-	V3D21 V3D2F V3D27	049774710 46571 46875 46875	V3021- V302F- V3121-
FLIGHT C 5.028 2.328 0.049	12.709 136.455 119.271	FLIGHT C	12.674 135.458 118.626
TIME CF MXABTY MXABTZ MXABTZ MYABTZ-	V80YI N80YF N80YT	ТІМЕ ОР %ХАВТҮ- %ХАЧТZ- %ҮАЧТZ-	- 17057 - 17057 - 17058
NTIES IN 5.022 1.038 3.404	2.634 33.790 33.442	NTIES IN 5.014 1.038 0.405	2.632 33.584 33.199
NCERTAL VLMXI VLMYI VLMZI VLMZI	NBDXI NBDXF VBDXT VBDXT	NCERTAL MLMXI- MLMXI- MLMXI- MLMXI-	V3DX1- V3DXF- V3UXT-

7-17 (Rev. 1 - 12/66)

TI

Uncertainties at 13 mins. before SPS2 Ignition (Update 1) TABLE 7.8

FT/SEC 46.215 SEC (28906.217 SEC) JNCERTAINTIES IN FT/5E (REL. TO NOM. AXES) TRACK I MIN. VELOCITY ALT. a HR. POSITION AND VELOCITY UNCERTAINTIES ALONG LOCAL AKES AT TIME FROM LAUNCH = FEET RANGE (KEL. TU NOM. AXES) POSITION UNCERTAINTLES TRACA JNE SIGNA JNCERTAINTY

3.244 MR.) 6+8-9 4.835 0.080 0.967 2.317 0.953 0.242 0.029 1.048 0.419 0.00.00 35,934 2,692 2.013 3.476 58.619 35,934 3.742 1.049 0.498 0°044 43.084 42.695 15.674 0.289 5.590 58.619 0.184 0.165 0.185 0.115 0.388 1.195 6.869 58,627 RANGE MR.ABUUT YSM) BDZ . ŧ ı ŧ ŧ I 1 ı 1 L 1 0.000 MR.) DUE TO 000000 0.684 C.439 0.001 0.296 4.270 000000 000000 2.308 2.501 4.755 0.012 0.004 064.0 0.192 0.927 0.126 1.053 0.018 0.086 0.223 0.010 0.042 1.901 0.414 .205 7.205 7.207 0.018 0.430 4.566 0.019 0.243 2.853 0.007 -0++07 MR.. ŧ 1 1 1 1 1 . 1 1 1 1 1 ŧ I 1 4 ŀ t 1 ŧ . 1 I MK. + UUE TO ADSAY BDY 1.054 0.407 MR.A3JUT 25M, DUE TO AC3Z 170.491 801.338 431.825 417.202 6.727 66.654 10.449 4.085 56.650 23.463 190.996 4.229 4.080 205.716 66.537 0.000 790.996 125.997 59.343 70.443 1.084 29.112 339,344 368.456 40.308 065.407 849.028 104.517 131.834 65.350 840.405 840.405 1841**.**390 630.847 5.177 7211.3 0.218 42., DUE 10 8 L 1 ŧ 1 1 I . . t F 480UT Z = 0, Z APUUT Y = 0, Z ABUUT X = 0,100 MR.) 0.583 117925.5 18278.9 7151.7 99130.5 0 0 230424.8 41068.9 11819.6 1380551.7 116684.7 221145.4 298229.8 1420191.0 1121961.2 8977.8 7431.9 1896.9 51595.6 601446.6 248669.9 1863436.3 765327.4 - 1495660.5 185235.4 149385.6 3233154.7 532.108 1380551.7 104460.7 653042.2 2112106.2 532,389 124515.7 730333.1 UJE TO ADIAX XQa 1 ı 1 1 ł 1.1 1 I 1 1 ł ŧ 1 . 1 . ł SOJRCE JNGERTAINTY ALT. TRACA Initial S.4. MlmS. (Jncorrel,) about lajnch inertial axes About XI 0.500 yr 75956.5 - 3915.4 2 UL TO ACBY (INIT.EARTH LCH.S.M.MLMS.MDI.XI - DUE 0. 0 10273.0). • 1 17•ć 11976•6 20004.1 8255.2 2017.4 19. 47.Ū 764.4 322.4 491.64 2•U 3. (200.0 232 U 7.601 5**04**05 341.5 6.23U 1231.1 11993.4 4.0 64.9 1712.7 25408 • V 25606.0 6167.1 253 • Z 37853.1 6.223 1231.1 •MLMS•ABT•XI T ł I ŧ Ł 1 1 1 4 1 1.1 . I I - 8040.4 Lajnch 5.4. 4LMS. GYRO ACC.SENS.DRIFT (INIT.EARTH LCH.S. 0.0 1322•C 4730•5 12723.9 4975.9 69051.4 28588.4 4040° 9-20494.0 1297783.8 970494.0 81184.6 151074.6 0.0489360 522180.5 5052.9 457953.6 492951.8 207596.8 6364.6 33233.0 160169.7 1001130.9 2198253.5 714583.7 81643.3 387328.7 50P179.1 119312.1 161043.8 361.786 361.973 420561.7 04007.1 1 1 1 1 ŧ . . 1 1 455 UNCER1. (FT AND FT/SEC)
455 UNCER1. (`\.MI.A.ND FT/SEC) RSS UNCERT, (N.MI.AND FI/SEC) (INCL.TKS.UPDATE UNCERT.) MLMS. (Y C4/5.53 0.400 C%/S.50 0.400 CY/5.52 NBDYFLGT (5.323 MA.DRIFT NBDZFLGT(5.323 NR.DAIFT NBDXFLGT(5.323 MR.DKIFT SINCE LAUNCH) NBUZCUMB SINCE LAU ICH) (II.II.EARTH SINCE LAUNCH 10 M5/G5U 8.0 MERU/G 5.0 NERU/G b.0 MERU/G NG/650 VERU 3.0 MERU Wdd άž Mdd ЧЧ Ä ž μĻ δPM CCEL . SQ . I VD . UNCERT. ACCEL-SCALE FACTOR ACCEL.INPJT AXIS 0.400 0.025 0.025 X ABOUT Y 0.141 0.100 0.141 GYRO BIAS DRIFT 3•C 150 150 150 10 Y APOUT X ACCEL.BIAS AD1AXCOM5 AD I AZ CONS ADSAYCOMS ABOUT ZI ABOUT YI NBUYCOMB VBUZINIT ACBXFLGT X ABOUT ACBXINIT ACBXCOMB ACBYINIT ACBYFLGT ACBYCOMB ACEZFLGT ACBZCOMB **NBUXCOMB** ACHZINIŢ **TINIXUEN** JNCERT. SFUX SFUY XXCN NCZZ **SFUZ**

7-18

(Rev. 1 - 12/66)

TABLE 7.9 Uncertainties at 2 mins. before SPS2 Ignition (Update 1)

B HR. 12 MIN. 46.215 SEC (29566.217 SEC) VELOCIT: JNCERTAINTIES IN F1/SEC POSITION AND VELOCITY UNCERTAINTIES ALUNG LOCAL AXES AT TIME FROM LAUNCH = POSITION UNCERTAINTIES II FFFT

		11001										
UNCERT. DIVE	SIJYA		- 	• TU 1.0"•	AXES)		•	2		- E D 2 1	VYE 21	
SOURCE JNCE	RTAINTY	ALT.			5	RANCE	AL 1 •			2		
INITIAL Sever	ILMS. LUNCORAEL	ADUUT LA		VERILAL AC	n				c			070 0
ABOUT X1 0.5	00 VR	6F803 . 2	ł	JH42.3	1	122499.5	111.5	c	•	202		600°0
ABOUT YI 0.0	125 4R	11624.3	1	17.0	1	24404.4	17.83	ŝ	•	008	5	0.330
A-011 71 0-0	255 VIR	4543-3	ı	11.4	1	9546.7	6.97	e	•	014	ł	0.128
ACTENSION ACT			Z ALCL	T Y = 0 • Z	ABUUT	$X = G_{100} MR_{0}$						
		201 5 - 04 - 04 - 1 2 2 0 6 6 4 - 1				1 3 2 3 6 1 . 6	96.71	ſ	0	140		1.816
			I		I			• •			ı	242 0
X AHDUT 2 0.1	41 1K	26102.5	I		ı	2.66440			5	010	ł	
Y AHOUT X 0.1	100 YR -	7324.9	ł	153.6		15629.9	- 11.42		.	149		0.122
ACCEL-BIAS (1	INII.EANTH LAJN	CH S.V. 4LM	۰. ۲	JUE 10 AC	BY 0.	407 MR.A33UT 25"	4. UUE TO A	135.	- 704-0	IR. ABUL	JT YS	Ω
ACHXINIT		0.0) •0		0.0	00.0	c	•	000		0.000
ACHXFIGT 0-4	- (24/5-00)	1.55973.1		\$76.5	-	852930.0	- 1346.85	1	- 1.	960		35.765
		1 1 2 2 2 2 2		0.76.5	-	0-02044	- 1346.85	-	-	860.		35.765
ALBALOWS	•	1.0.6753			•			•	•			
ACBYINIT		74125.6		193.4	ı	155754.1	113.76	8		.234	ŧ	2,092
ACBYFLGT 0.4	+00 LY/5-53 -	137401.3	1	10363.9		293055.0	- 213.18	ŝ	• 33	011		2.907
ACAYCOMB	•	63274.7	ł	11077.4		137295.8	- 99.41	7	~	777		0.815
						5 01 10 S	00 100 -	-	c	120		5967
ACDZINIT					-				o c	101		
ALBZFLGT U.	+00						1040.01	n -	o c			12.711
ALBLUND TOUL OF		4.04.70.40	1	•••••	•	6 • 0007tt	****		•			
ACCEL-SCALE FI				-		12677 6		4	c	000		712 0
			I	1.1.1								
		14044 4	I			7862200 162186.5	- 118-72	• •	•	039	1	0.210
									•			
		1207.5		H - 1		7533.0	- 1.85		- -	000		0.035
			•		+	- 70K0	6.87	. ~	c	200		110-0
			1-0-58		TO NDX	D.218 MALL DUE		- 354	MR. DU	E TO F	307	3-244 MR-
			•		()) -		99.94				1	0 180
S INTXORY		2.0102.0		1001		0 77100	540 7H	~ ~	•			997 9 997 9
VBUXFLGT (5.40	DV FX-DVIL	0°0+8065	ł	T 7012.7	1	1.02111			• r ·			
VBUXCOMB SIT	VCE LAUNCH)	380943 . 9	ı	21354.1	1	844450•8	618 . 67		• •	445		7=8+t
. F TINIYUEN	.0 NFRU	145385.5	i	8102.2	ł	321576.1	235.59	8		203		1.432
The state and the second	57 MALET	1185719-5	1	1135.6	•	488420-8	1818-66	0	0	869	ı	33.979
VADYCOMP 511	DCE LAUICH)	1330805.1	1	¢337.5	- 2	809997.0	2054.26	80	~	572	1	32.147
)) 												
VBDZINIT 34	•U MERU	446527.3	ł	24436.2		989709.6	725.09	ç	°.	242		5.640
N3UZFLGT (5.46	57 HR. DRIFT	464005.1	1	1323.9	1	974934.7	712.10	ç	- -	478	ı	13.114
VEDZCOME SIL	NCE LAUNCH)	d. 866016	ı	20260.2	-1	964644•4	1437.20	~	÷.	764	t	7-474
5Y 10 ACC. 52 15.	DELFT (IVIT.E	ARTH LC4.5.	4. I.I. 40	- IX•IH+•	UJE 10	ADIAX J.583 Mr	••• DUE TO	AJSAY	00000	WR.)		
ADIAXCONS 3.	.0 MERJ/G	108075.1	1	6048 . U	,	239544.3	175.49	0	1.	.279		1.364
AJSAYCCH3 >.	- 0 metulo	147234.7		219.6		308167.1	- 225.21	ŝ	•••••••••••••••••••••••••••••••••••••••	,106		4.480
AJIAZCOMS N.	.0 AE 3.1/G	94475.6	,	461.3	,	199467.1	145.69	80	•	.267	T	2.712
11 JUNCEN L	1 414 C 11 2 2 2	7.9559.002		57053.3	t	274224 . 9	3120.44	8	10.	240		52.352
ASS HACEPT . 14	. 11. A 40 F1/5EC)	329.414		6.138		703+446	3120.44	8	10.	240		52.352
ASS UNCERF.C.	A 40 F1/SEC)	329.587		6.1.9		703.815	3122.11	Ē	10	243		52,357
LINCLOTK SOUPL	DATE JICERT.)											

7-19 (Rev. 1 - 12/66)

TI

CONFIDE

corPENIAL

Ignition (Update 1)
before SPS2
ainties at 13 mins.
10a T _{ff} Uncert
ABLE 7.

sec.	SEC.	SEC.		SEC.			SEC.	SEC.	sec.	sec.
0.096	0.008	0.334		188.063			0.096	0.008	0.333	134.111
NCXX-	ייראר-	NCZZ		R55			XXU2	277	NCZZ-	ĸśŚ
0.417	0.362	5 • 6 4 5	0.069	0.713	0.282		0.478	0.363	5.808	0.367 0.710 0.282
SFEX -	SFEY -	5FEZ -	ADIXX	AD5YY	4D122		SFEX	SFEY	SFE2	401XX- 405YY- 40122-
5R4 • 7 T	160.61	28.28c	191-0	196.11	U•23		12.177	49.243	969.95	0•197 12•152 0•241
5) ACB2I -	ACBZF	ACBZT	4) S A X T	AJSAYT-	AJSAZI-	S)	ACB21	ACB2F -	ACBZT -	4)5AXT- 4)5AYT 4)5AZT
CRS (SFC) 5.498	10.540	4.916	8•586	0.925	1.724	ARS (SEC	5.801	11.251	5.076	8•092 0•930 7•401
ACAYI ACAYI	ACUYF -	ACBYT -	AUIAXT	AUIAYT-	AUIAZT	ATIVE EHR	- IYuSA	ACUYF	ACUYT	4014×1- 4014×1 4014×1-
4 FOR POS 6.400	66.985	56,985	38.066	40.818	87.850	• F34 - 1E3	00000	604.63	85.403	30•132 33•029 54•553
NPJTATIO ACBAI	ACEXF-	ACEAT-	13UEV	V3D2F	13D2T	017ATLCM	ACBXI	ACBXF	ACBAT	43021 - V302F - V3021 -
F_IGHT CO 5-096	2.040	0.577	11.639	120.877	139.856	F_IGHL C	4.353	2.056	0.519	10.749 58.002 70.989
LIME OF NXABIY	144472	47431X-	13064	VJDYF	TYOEN	IIVE OF	4XABTY-	4XABTZ-	NY ABTA	VJDY1 - NJDYF - NJDYT -
411E5 IN 5.409	0.929	196.0	2.342	23.666	32,454	NI SEIN	5.209	0.925	196.0	2•303 24•442 25•290
JNCERTAI MLMXI	4 MY 1	NLMZI	IXUEN	NJUXE	TXDEN	JNCERTAI	-IXWJM	-IYNJP	MLMZI-	VBUXI- Nauxf- Vauxt-

TABLE 7.10b T_{ff} Uncertainties at 2 mins. before SPS2 lgnition (Update 1)

7-20 (Rev. 1 - 12/66)

F 1

SEC.	SEC.		SEC.		1	SEC.	SEC.	sec.		SEC.	
U.096 U.008	U . 334		204.981			0,096	0.008	0.333		126.382	
NCXX-	ארצב		RJS			XXリス	NCYY	NCZZ-		RoS	
0.477 U.362	5.607	0.069	0.713	0.282		0.478	0.303	5.908	0.064	0.709	0.282
SFEX SFEX II	sFiz -	ADIXX	A J J Y I	40122		SFIX	SF=Y	SFEZ	-XX10A	-17cQA	AD122-
14.226 d4.486	01.107	1.1.1.7	11.225	0•281		16.048	43.738	36.538	0•197	12.315	0.281
5) 42821 - 4282F	4 C B Z T	A J S A X F	4 JSAY I-	A JSAZ I-	S)	ACB21	ACBZF -	4CB2T -	A JSAXT-	A JSAY I	A JSAZT
IRS (SEC 6.039 10.185	4.667	8-670	0.924	1.192	DRS (SEC)	5.761	11.166	4.881	8.011	0.931	1.336
ACUYI ACUYI ACUYI	ACUIT -	ADIAXT	ADIAYT-	AUIAZI	ATIVE EARC	ACUYI -	ACUYF	ACDYT	401AX [-	ADIAYT	-12AICA
+ F3 < P35 3.000 43.042	2+6.444	40.191	42.524	6+7•66	V FOX NEG	000.00	90.157	151.06	24.791	31.486	40.351
427710 42641 4284F	ACBAI-	IZDEN	VBUZE	VBDZT	ÚITATLCK(ACBAI	ACBAF	ACBAT	-12061	V3D2F-	-120EV
 5.125 2.145	0.576	11.732	135.032	¿५C•651	FLIGHT CC	4.925	2.051	0.579	10.603	56.752	56.015
Г146 СF 1хант Чхант	YYAUTX-	IYOEr	NUDYF	TYCEN	TIME OF	4×ABIY-	4XAUIZ-	47 ABT X	- IYOEN	VJDYF -	- TYOEN
ITLE5 IN 5.443 J.930	362.0	2.340	3 . 588	53 . 548	nI caln	5-176	3.424	196.0	2.247	23.286	25.281
JNCERTAIN MLAXI MLAXI	I ZN TH	12081	VBUXE	TXUEN	NCERTAIN	MI MX I-	- I Y M Y	MLMZ I-	-1X06N	N30XF-	-1 XOEN

TABLE 7, 11 Reentry Start Uncertainties (Update 1)

POSITION AND VELUCITY UNCERTAINTIES ALONG LOCAL AXES AT TIME FROM LAUNCH = 8 HR, 23 MIN, 3,329 SEC (30183,332 SEC) POSITION UNCFRTAINTIES IN FFFT VELOCITY UNCERTAINTIES IN FFFT

		5 L								AINI LES		11/3EC
UNCERT. ONE	SIGMA		£	(EL. TO r	VOM. A	xes)			(REL.	TO NOM.	AXES)	
SOURCE JNC	ERTAINTY		-1-	TR/	ACK 	RANGE		ALT.		TRACK		RANGE
INTIAL SOND IN	ILMS. LUNCURA	EL.I APUU		I NEW IV		5 						
ABOUT XI 0.	NR 00	18160		. 1921	,	- 190128.2		172.778		5.014	r	3.855
ABOUT YI 0.0	125 MR	323	• 0•2		8°.	- 31¢12.9		27.785		0.026	•	0.960
ABOUT ZI 0.0	125 MR	127			3.7	- 12403.1		10.903		0.002	1	0.368
ACCEL INPUT A)	(IS MLMS. (Y	ABOUT 4 =	0. Z AB		2 • 0	ABUUT X Ê 0.100	MR.)			•		
X AROUT Y OF	41 MR	1752:			<u>م</u>	- 160307.6		150.633		0.147	1	5 150
			•	4 -							•	
	¥ = :	132		- -	, .			050.20		240.0	•	2.123
Y ABOUT X 0.	.00 MR	- 200	3.6	. 387	•	19044.4	•	17.755		0.984		0.520
ACCEL.BIA5 (1	NIT.EARTH LA	UNCH S.M.	MLMS.	- DUE 1	TO ACB	Y U.407 MR.A33	UT ZSM, C	NE TO ACBZ	0+•0- :	7 MR.ABU	UT YSI	÷
ACBXINIT		J	0.0	0	D •0	0.0		00000		000 • 0		000000
ACBXFLGT 0.4	00 CM/5.50	- 241169	- 9-6	404	• •	2373499.7	I	2096.894	,	2.148		73.032
ACBXCOMB		- 241160		100	4	7 2025755	•	2096.894	1	2.148		72 032
			•				!		1			
ACBYINIT		20794	- 6	224	د .	- 199400.5		177.897		0.039	1	6.019
ACBYFLGT 0.4	+00 CM/5.50	- 36864		2086	د.	371903.2	,	331.317		20.278		9.306
ACBYCOMB		- 16069	•	2312	8	172002.6	•	153.420		20.318		3.287
				-	5							
	00 CH .C CO		t .		× :		•	403.528	1	0.449		15.671
ALBZFLGT 0.44	100 CM/2*20	C+1 7	••	200	ۍ : •	- 2291.14.2		c017.647		1.239	t	33 ° 283
ACBZCUMB	1	16464	6.0	514	л •	I788259.8		1624.318		0.809	•	17.611
ACCEL.SCALE FI	NCTOR											
SFUX 150	Wdd (- 1690	• 5	~	5 •	15565.8	•	13.882		0.002		0.546
SFUY 150	Mdd	- 126	- 9-1	320	د.(12477.3	ł	11.190		0.412		0.338
SFUZ 150	Wdd (- 1976]	-	. 21	.	203926.7	•	183,809	1	0.092		3.971
ACCEL SQ. I VD.	JNCERT.											
NCXX 10	0 MG/GSQ	- 340	0.2	0	• •	3440.9		2.897	1	0.001		0.098
NCZZ IC	0 MG/GSQ	114	6.9	0	8.0	- 11502.1		10.649		0.004	1	0.244
GYRO BIAS ORIF	T (INIT.EA?	TH LCH.S.	1.MLM5.A	- IX 19	DUE T	54 812 0 X A C	•• DUE 10	BDY 1.05	4 MR	DUE TO	BDZ	1-244 MR
NBDXINIT 3.	O MERU	1946		840	• •	- 83448.7		75.595	•	2-194		1.687
NBDXFLGT (6.60	12 MR.DRIFT	93281	-	3683	4	972565-1		883.192	-	41.985		19.490
NBDXCOMP SIN	CF LAUNCH)	101220		4574	_	- 1056U13.0		958.788		44.170	. 1	177
						1 · · · · · · · · · · · · · · · · · · ·				6 - 7 • Fr	•	117077
NBDYINIT 3.	O MERU	3830	- 1	4051	• 6	- 402189.0		364.339		10.574	•	8.130
NBDYFLGT (6.60	12 MR.DRIFT	323732	2.4	512	¥0	- 3183(51.4		2812.841		4.282		99.353
NBDYCOMB SIN	ICE LAUNCH)	362039	- 9-0	3538	8.1	- 3585¥40•4		3177.180		14.856	1	07.484
E THITAN	N NED!	2007.11	, ,	57761	1	- 0102001 -						
	NO MP. DOIFT					- 1221210e1		12501214		340°20	•	420°07
		109/90		12560	•	0 00000771		7723 460			•	201.10
TYPO ACT SENS.							. HM COS		~		•	001 . 20
	WEDING				, , ,			271 303				
				2.00	- 14 •	0 LCQ/00	ļ	505°1'3			ŧ	0.008
			•		•		•	cto.0cc	1	1.5.0		12.394
AUIALLUMB 0	U MERU/G	6007	• 	5.54	•	E•62n447 -		227.816		0.240	,	7.742
RSS UNCERT. (F1	AND F1/SEC)	540890	e	15370	0	5425402 . 1		4838.012		61.871		48.039
			11	C •7	6 2	004-140		710-800	-	1,8.10	-	48.039
RSS UNCERT. (N.	MI.AND F1/SE	C) 89.C	11	2•5	59	893.374		4840.613	•	61.873	-	48.132
(INCL+IKS+UPD	ATE UNCERT .											

7-21 (Rev. 1 - 12/66)

CONFIDENTIAL

CONFID

TABLE 7. 12 Reentry Start Uncertainties (Update 2)

8 18. 23 MIN. 3.329 SEC (30183.332 SEC) POSITION AND VELOCITY UNCERTAINTIES ALONG LOCAL AXES AT TIME FROM LAUNCH =

		POSITI	0-4 UNCERI	TAINTLES	27	FEET		VELOCITY	JNCERTAINTIE	S IN	F1/SEC
JNCERT. ONE !	51 GMA		(XEL• 1	TO NOM. A	VXES/			1	KEL TO NOW	• AXES	
SOURCE JNCER	RAINTY AS CUNCORAEL	ALT. J ABOUT LA	INCH INFE	TRACK PTIAL AXF	ď	RANGE		ALT.	THACK		KANGE
AROUT XI 0.500		84°4		781-4	ç	8. 8		0.261	2.062		0.018
		4 1 - B		30	I		ł	0.129	0.010	ı	0.007
ABOUT Z1 0.02		2.4		2.6	•		ı	0.007	0.006	•	0.000
ACCEL INPUT AXIS	5 MLMS. (Y ABO	UT 2 = 0.	Z ABOUT 1	7 •0 = 1	ABUUT)	M CCI.0 -)	R.)	,			
X ABOUT Y D-141	A.R.	237.5)	22.2	•	7.8	•	0.736	0.058	ł	0.005
X ARDIT 7 0-14		15.1		1 . 4	,	4-0	1	0-047	00.03	1	000 0
					1					1	20 ° 0
ACCEL BIAS (IN)	LT_FARTH AUNC	MIM WIM	5 01	LJJ.	3Y U-40	7 MR.ABUT	ZSM. DU	E TO ACAZ		BOUT YS	4)
							•			•	
ALBAFLGT 0.40	0	0.4481	1	1.8.5		0.00					
ACBXCOMB		1894.0	ı	178.2		63 . 8		7.634	- 0.654		0.108
ACBYINIT	ŧ	39.3		42.1	ı	а•5 С	1	0.122	0.110	•	0.006
ACRYFIGT 0-400	0 CM/5.50	199.4		763.6		94.]		0.807	6.471	ł	0.352
ACBYCOMB	• •	160.1		806.3	•	97.6		0.685	6.581	ŧ	0.359
4/871N17		682 U	•	6 .2.0		61.7		111.5	- 0-163		0.118
	- 08,5,80	142.0		90, 1		1/88.5	,	0.638			6.573
		5.0.0		37.1		1050.2		1-473	002-0		6.692
	108			•							
SFUX 150	PPM	15.3	ı	1.4		0.4		0.046	- 0.03		000 0
SFUY 150	Mdd	1.6		14.9	1	0.7		0.005	0.039	•	0.002
SFUZ 150	Mdd	19.1	ı	13.1	1	236. 8		0.074	- 0.034	•	0.629
ACCEL . SQ . I ND . UNK	CERT.										
NCXX 10	MG/650	0.0		0°0		0.0		0,000	000 • 0		000 • 0
NCZZ IO	MG/GSQ -	0.6		0.4		8.3	ł	0.002	0000		0.022
GYRO BIAS DRIFT	(INIT.EARTH	LCH.S.M.ML	MS.ABT.X	[- DUE 1	LO BUX	0.218 42.,	DUE TO	30Y 1.05	54 MR., DUE T	0 80Z	3.244 MR.)
0°E LINIXOBN	MERU	36.9		341.9		3 . 8		0.114	0,902		0.007
NBDXFLGT(6.602	MR.DRIFT	1100.8	1	0192.6		114.9		3.408	26.922		0.237
NBDXCOMB SINCI	E LAUNCH)	1137.8	ň	c•+650		118.7		3,523	27.825		0.245
NBDYINIT 3.0	MERU	177.9		1647.8		18.5		0.550	4.350		0.038
NBDYFI GT (6.602	MR.DRIFT -	10903.4		191.	1	¥87.4	1	33.774	2.622	ı	1.898
NBDYCOMB SINC	E LAUNCH) -	10725.4		2639.6	ı	968 . 8	ł	33,224	6.972	ł	1.860
NRDZINIT 3.0	MERU	547.8		071.6		57.1		1.695	13.388		0.117
NADZELGT (6.602	MR.DRIFT -	629.1		682.9	•	56.1	,	1.953	1.759		0.107
NADZCOMR SINC	F LAUNCH)	81.3		5754.6		1.0	•	0.258	15.147		0.010
SYRD ACC SENS DI	RIFT (INIT-EA	RTH LCH.S.	M.MLMS.AF	$3T \cdot XI = D$	UE 10 /	AD1AX 0.58	3 MK. • U	UE TO ADS	AY 0.000 MR	-	
ADIAXCOM3 8.0	MERU/G	127.1		1177.1		13.2		0.393	3.106		0.027
ADSAYCOM3 5.0	MERU/G	678.6	ı	61.7		61.5		2.114	- 0.164		0.120
ADIAZCOMB 8.0	MERU/G	62¢6		67.8	•	5.6	ł	0.195	0.176	ı	0.010
RSS UNCERT. (FT)	AND F1/SEC)	10991.0	H	2505.6		2109.6		34.390	33.320		6.991
RSS UNCERT. (N.M.	I.AND FT/SEC)	1.808		2 . 058		U.347		34,390	33.320		6 •991
N N V N N N	T AND ET SEC	1 . 800		2-059		0.356		205.46	22.22		A. 007
(INCL.TKS.UPDA	TE UNCERT.)	•)) P		• • •)))		

7-22 (Rev. 1 - 12/66)

CONFLOENTIA

CONFIDENTIAL

TABLE 7, 13a Flight Path Angle Uncertainties at Reentry Start (Update 1)

UNCERTAINTIES IN ACTUAL FLIGHT PATH ANGLE FUR POSITIVE AMU UNCERTWINTIES

M M M M M M M M M M M M M M M M M M M	MR. DEG.)	м М М П П П П	MR. DEG.)	A A A A A A A A A A A A A A A A A A A	MR. DEG.)			8 8 8 8 8 8 8 8 8 9 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	MR. DEG.)	м к • к • к	MR. DEG.)	м к • м к • е и к	MR. DEG.)
0.0787 0.0074 0.2899	.30 . 5240 7.4784	0.0732 0.0068 0.2637	.24 °7177 7 • 1457	0.0093 0.0010 0.0489	67 . 6845 3.8780			0°0000 0°0000 0°0000	0 . 9468 0 . 0542	0,0000 0,0000 0,0003	1.0014 0.0573	0,0000 0,0000 0,0002	3.0920 0.1771
NCXX NCYY NCZZ-	RSS 1	NCZZ- NCZZ- NCZZ	R S S 1	NCXX- NCYY- NCZZ	RSS (NCZZ- NCYY- NCZZ-	RSS	NCXX- NCYY- NCZZ-	RSS	NCXX- NCYY NCZZ-	RSS
IN 0.3772 0.3044 5.0099	0.0616 0.5778 0.2316	0.3528 0.2808 4.5337	0.0555 0.5435 0.2156	r AA 0.0334 0.0425 0.7277	0.0109 0.0790 0.0289			NN 0.0012 0.0001 0.0001	0.0001 0.0031 0.0001	0.0012 0.0001 0.0112	0.0001 0.0033 0.0001	AA 0•0041 0•0004 0•0076	0.0003 0.0102 0.0005
(U) Y A SFEX SFEY SFEZ	ADIXX- ADSYY- ADIZZ-	(U) Y AI SFEX- SFEY- SFEZ-	ADIXX ADSYY ADIZZ) (U) SFEX- SFEY- SFEZ-	ADIXX ADSYY ADSYZ			U)γ A SFEX- SFEY- SFEZ	401 XX- 405 Y Y 401 22	(U)Y AI SFEX- SFEY- SFEZ	ADIXX- ADSYY ADI22) (U) SFEX- SFEY- SFEZ	4D1 XX- 4D5 Y Y 4D1 22
(EGNM) 12.3506 56.1187 44.0064	0•1766 9•5473 0•2292	lEul) L1.4764 D2.3578 40.3483	0.1583 8.9282 0.2139	JE (EG2 0.9842 26.3896 18.1565	0.0315 0.8860 0.0275			(EGNM) 0.0280 0.0049 0.0630	0.0006 0.0081 0.0003	(E 41) (- 0609 (- 1498	0.0006 0.0610 0.0003)E (EG2 0.1888 0.0620 0.2508	0•0020 0•1882 0•0011
AL TIME ACB2I ACB2F ACB2F	4)54XT 4)54YT 4)54ZT 4)54ZT	TIME ACBZI+ ACBZF ACBZF ACBZF	A J5AXT A J5AYT- A J5A2T-	ALTITU ACBZI- ACBZF ACBZF	AJSAXT AJSAYT- AJSAZT-	e 2)	l E S	ACBZI- ACBZI- ACBZF- ACBZF-	A 35AXT- A 35AYT- A 35AZT-	ACBZI- ACBZI- ACBZF- ACBZF-	435AXT- 435AYT- 435AZT-	ALTITUL ACBZI- ACBZF- ACBZF-	AJSAXT- AJSAYT- AJSAZT-
AT NUMIN 4.8340 9.0287 4.1912	7.3826 0.7£36 6.1º90	T NOMINAI 4.5152 8.3464 3.9191	6.6402 0.6786 5.7 <u>5</u> 95	T DE5IRE(0.7921 1.1539 0.8342	1.5511 0.0734 0.942	rt (Update	CERTAINT	AT NUMINI 0.0033 0.0208 0.0174	0.0108 0.0099 0.0053	r Nominal 0.0435 0.0164 0.0129	0.0114 0.0104 0.01056	. DESIREC 0.0109 0.0338 0.0429	0.0353 0.0324 0.0174
VAL AXES ACUYI - ACUYF ACUYF	AD1AXT- AD1AXT AD1AXT	AL AXES A ACBYI ACBYF - ACBYF -	ADIAXT ADIAXT- ADIAXT-	AL AXES A ACBYI ACBYF - ACBYF -	ADIAXT ADIAXT- ADIAXT	eentry Sta	/E TMJ NV	IAL AXES / ACBYI ACBYF - ACBYT -	ADIAXT- ADIAXT- ADIAXT-	АсαΥΓ АсαΥΓ - АсаΥΓ -	ADIAXT- ADIAXT- ADIAXT	L AXES AI ACUYI ACUYF - ACUYT -	adlaxt- adlaxt- adlaxt
TO NOMI 0.0000 57.4801 57.4801	30•3914 30•0947 60•1521	T0 ACTUA 0.0000 52.1717 52.1717	27.9348 28.6631 57.2130	TO ACTUA 0.00000 6.1211 6.1211	9.6776 7.9549 27.5726	nties at R	R POSITIV	TO NOMIN 0.0000 0.2090 0.2090	0.0467 0.0537 0.0070	T0 ACTU≜ 0.0000 0.2120 0.2120	0.0493 0.0563 0.0069	TO ACTUA 0.0000 0.5663 0.5663	0.1518 0.1745 0.0225
RELATIVE ACBXI ACBXI ACBXF ACBXF	NBUZI- NBUZF- NBDZI-	RELATIVE ACBXI ACBXF- ACBXF-	NBDZI NBUZF NBUZF	RELATIVE ACBXI ACBXF ACBXF ACBXF	NBDZT NBDZF NBDZT NBDZT	Uncertai	ANGLE FU	RELATIVE ACBXI ACBXF ACBXF	NBDZI- NBDZF NBDZF	RELATIVE ACBXI ACBXF ACBXF	NBDZI- NBDZF NBDZF NBDZI	RELATIVE ACBXI ACBXF- ACBXF- ACBXF-	NBDZI- NBDZF NBDZF
TH ANGLE 4.0935 1.702/ 0.4831	9.9075 75.4064 85.0226	TH ANGLE 3.8556 1.5870 0.4477	8.9921 75.1096 84.4699	TH ANGLE 0.6315 0.2230 0.0707	2.1928 43.998/ 58.2295	ath Angle	GHT PATH	TH ANGLE 0.0201 0.0012 0.0014	0.0151 0.9289 0.9137	TH ANGLE 0.0204 0.0013 0.0013	0.016U 0.9752 0.9591	TH ANGLE 0.0651 0.0041 0.0043	0.0494 3.0559 3.0054
FLIGHT PA MXABTY- MXABTZ- MYABTZ MYABTX	NBDYI - NBDYF - NBDYT -	FLIGHT PA MXABTY MXABTZ MYABTZ-	NBDYI NBDYF NBDYI	FLIGHI PA MXABTY MXABTZ MYABIX-	NBDY I NBDYF NBDY I) Flight F	CTUAL FLI	FLIGHT PA MXABTY MXABTY MYABTX_	NBDYI - NBDYF NBDYT	LIGHI PA MXABTY MXABTZ MYABTZ	NBDYI - NBDYF NBDYT	LIGHI PA 4XABTY MXABTZ MYABTZ	NBDYL - NBDYF NBDYT
VTIES IN 4.7021 0.7554 0.2965	2•0581 23•9639 26•0062	TIES IN 4.2529 0.7090 0.2760	1,8581 21,8306 23,7300	4TIES IN - 0.9305 0.1037 0.0371	0.3830 6.6710 7.5127	ABLE 7, 131	ries in A	4TIES IN 0.0071 0.0035 0.0002	0,0031 0,0939 0,0970	4TIES IN 0 0.0076 0.0037 0.0002	0.0033 0.0992 0.1026	ITIES IN 0.0234 0.0115 0.0006	0.0102 0.3047 0.3148
UNCERTAIS MLMXI- MLMYI- MLMZI-	NBDXI- NBDXF- 2 NBDXT- 2	UNCERTAIN MLMXI MLMYI MLMZI MLMZI	NBDXI NBDXF 2 NBDXT 2	UNCERTAIN MLMXI MLMYI MLMZI	NBDXF NBDXF NBDXT	1	JNCERTAIN	UNCERTAIN 4LMXI- 4LMYI MLMZI MLMZI	NBDXI- NBDXF- NBDXF-	UNCERTAIN MLMXI- MLMYI MLMYI MLMZI	NBDXF- NBDXF- NBDXF-	UNCERTAIN MLMXI- MLMYI MLMZI	NBDXI- NBDXF- NBDXT-
							_						

 \frown

0

(Rev. 1 - 12/66)

LTI

7-23

F+

TABLE 7, 14 Reentry E	End Uncertain	ties (Upd	late 1)		0 0 0	N CC	02 r		6111	SEC)
ION AND VELOCITY UNCERT	AINTIES ALDI POSITI		- AXES AT VIAINTIES TO MOM.	IIME FROM LAUNCH - IN FEET Veed	¥ 10 10	VELOCITY	37.34 UNCERT	AINTIES	AXFS)	FT/SEC
E UNCERTAINTY	ALT.		TRACK	ANDE RANGE		AI.T•		TRACK	1	ZANGE
T XI 0,500 MR	38587.0		8493.9	- 156540.B		198.291		240.0		112.094
ΓΥΙ 0.025 ΜΚ Γ ΖΙ 0.025 ΜΚ	6802 . 3 2544.2	; 1	854•8 552•6	- 25836.2 - 10099.4		33 . 718 12.846	ı	0.545 0.342		18.668 7.257
INDUT AXIS MLMS. (Y AB		Z ABOUT	Y = 0. Z	ABAJI $X = 0.100 MF$	` `	0-0-0-1		070		440 ac
JUL Y U. 141 4K JUT Z 0.141 4K	35922.4 14681.5	i 1	1920.3	- 140414°1		14,002		1.287		41.221
OUT X 0.100 4R	4120.9	•	124.0	16504•0 	1 .	20.882	5 1 1	1.048 17 MH.•∆⊔(• L • •	11.560
• BIAS (INII•EAKIR LAU) INII	1. 0.0 0.0	•		1004040 440001 0.0		0°0000	•	0.000	-	00000
FLGT 0.400 CM/S.50 -	- 478421.4		13324.5 13320.5	1961844.7 1961444 7	1 (2459 .431 2450 431	1 1	46.849 46.849	11	416.752. 416.752
	r 1770/r		r • 6 3 c c c		•	7C+ 8/1-3	•		•	
IIVI	41513.4	ı	6.9166	- 164177.0		209-602	,	5.581		118-413
FLGT 0.400 CM/S.SQ - CUM3 -	- 75988.6 - 34478.1		21951.1 12934.8	306257•5 141480•5	• •	178.928 178.928		19,965		104.270
	7 580111	-	3967.6	421531-4	ı	550.126	1	9.714	ı	304.585
FIST 3.400 CM/5.50	131493.5	1	51378.2			2436 942		44.080	-	368,324
	370509.5	1	+1430.6	- 1404523.2		1886.815		34,366	-	063.739
SCALE FACTOR	1. F. G. F. J.		1-064	1 2H 7 2 - C	I	20.416		0-140	1	6.821
	7586.4		281.6	10331-4		13,112	,	0.140	1	7.328
150 PPM	40852.8		5600.7	168598.9	•	211.154	1	3,633	L	118.600
.SD.IND.UNCFRT.				, , ,						
10 MG/GSD	- 806 -		09800	3.513.6 2.5510	•	2.916	ı	0.110	1	20102
IU MG/GSU 31A5 D31FT (INIT-EART-	H LCH-5.4.4	15.AB1.	<pre></pre>	. 3 83X 0.218 MK.	DUE TO	ьот 1.05	4 MK •	DUE TO	6DZ	3.244 MR
INIT 3.0 MERU	16882.4	•	3716.3	- 68490.8		86.757		0.023		40°044
FLST (6+807 MR+DHIFT	191502.5	•	19736.4	- 797121.3		995 . 325	•	63.413		510+545
COM3 SINCE LAUNCH)	208385.3	•	13452•7	- 866,12.1		1082 .08 3	1	63.390		619•589
INIT 3.0 MERU	81368.6	ł	1.11671	- 330U48.U		418.138		0.111		236.373
FLSI(6.80/ MR.URIFI	746072.1	1	8.757.8	- 2628482 . U		3597.197		60 . 762		.936.076
CUNS SINCE LAUNCH)	821440.7	-)6568 . 9	- 2958580 <u>1</u>		4015,335		60.873		:172.449
INII 3.0 MERU	250426.9	•	55124.7	. 1015937 . 3		1286.896		0,341		727.483
FLGT (6.807 MR.DRIFT	262694 8	1	90985.9	- 1029915.0		1320.564	-	33.134		746.331
COM3 SINCE LAUNCH)	513121.7	-	46110•6	- 2045852.3	-	2607.461	- - -	132.792		473.814
ACC+SENS+URIFT (INIT+E	EARTH LC4.5.	4• MLMS•	481•X1 -	.JE TO AU1АХ 0•58. 245845 8	MK • •	UUE TU AUS 310 008	•A1 0•	1.312	_	175.856
	00401 0	•		326×00.8	•	423,770	• 1	7.416	ł	234.828
2CO48 8.0 MERU/S	53169.5	t	10822.3	211145.3	I	268,357	•	2.890		151.380
NCERT.(FT AND FT/SEC) NCERT.(N.MI.AND FT/SEC)	1173673.3 193.151	5	16070.2 35,560	4471648•0 735•938		5849,088 5849,088		170.359 170.359		1251.881 1251.881
NCERT. (N.M. AND FI/SEC)	193•250		35.568	736•318		5851.987	~••	170-396		1253+458
L.TKG.JPUATE JNCERT.)										

7-24 (Rev. 1 - 12/66)

ļ

I

۲۹I ۲)	INTIES &LONG LOCAL POSITION UNCERI (REL. 1 ALT.) ABOUT LAUNCH INFR	AXES AT TIM FAINTIES FO NOM• AXES TRACK RTIAL AXES	IE FROM LAUNCH = IN FEET .) RANGE	8 HR, 38 M VELOC ALT	IN 37.3 ITY UNCE (REL	29 SEC (31 RTAINTIES • TO NOM. IRACK	117.3 IN AXES)	132 SEC) FT/SEC AANGE
824.1		1146 7050 +379.9 9.3	60.4 42.0	- - - - - - - - - - - -	37	7.715 0.000	ı	0.12
T Z = 0, Z ABOU T Z = 0, Z ABOU BOT 3 = -	5	208•2 / = 0• Z ABN 144:0	UT X = 0.100 MR. ADE.0			0.263 0.263	1	060-0
156.7		22.7	114.5			0,055	•	0.298
17.2 = = 5.M. 4L45. =	D.C	865∙5 JE T∪ AC ₃ Y 	0.407 MR.ABOUT 2	5M. DUE 10.0	59 ICuz -0.	1.517 407 MR.ABO	UT YS	0.207 M)
17623.3 -		0.0 435.6	000 1039301 10303 1	2 2 2 2 2 9 4 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9		0.000 1.428	• •	10.585
275.8 275.8 1197.1 1473.0		1998.0 1993.1	151.5 1830.7 1679.2		0.86	9.575 10.322 0.746		0.498 1.792 1.294
5063.1 10515.1 5452.0		152.1 837.7 989.8	686°5 7563°9 6877°4	- 15.3 21.3 5.9	0 2 2	0.006 0.787 0.793	ł	3•104 6•705 3•600
1192.0 7.8 1094.9		153.5 196.3 102.7	850°0 26°8 924°6	809 ••• ••0 ••• •••	•	0.432 0.473 0.180		2•378 0•067 1•649
163.5 - 527.6 CH.S.4.4LMS.ABT 273.0	IX.	19.7 - 42.1 - DUE 13 B	112.7 376.9 DX 0.218 MR C 26.4	0.41 0.41 0.807	133	0.048 0.034 • DUE TO 1	BDZ	0.272 0.294 3.244 MF 0.053
8435 ₆ 4 - 8708 ₆ 5 -	500	1727 . 1 1643 . 4	846•9 873•3	• 25.4 [.]	1 1	103.137 106.513	1 1	1.709 1.762
1316,1 - 83848,5 - 82532,3 -	6 2 1	235.9 515.9 751.9	127.4 10891.2 11018.7	254-51 250-550	111	16.270 0.003 16.273	1	0.258 51.603 51.345
4050.6 4572.5 521.8 521.8 521.8 1132.6 3248.5 324.8 324.8	0.000 0.00000 0.0000 0.0000 0.000000	1425.2 1820.0 2455.3 11.4X1 - JE 1521.62 115.1 - JE 115.1 - JE	392.1 2464.4 2656.5 2656.5 104.4 577.2 149.4	HR., DUE 12.27 HR., DUE 10.57 - 3.55 - 3.55 - 9.31	00 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	50.075 158.274 208.350 0.000 MR.) 13.526 0.123 8.247	• • •	0.795 8.253 7.457 0.412 1.166 0.348
85129°3 14•010	105	165•4 7•308	17058,3 2,807	254.9 254.9	4.4	235•241 235•241		53.236 53.236
14.010		2, 20B	2-808	254.0	Ŷ	235.242		53.237

7-25 (Rev. 1 - 12/66)

CONFIDENTIAL

CONFIDENTIA

TABLE 7, 15 Reentry End Uncertainties (Update 2)

TABLE 7.16

IMU Stable Member Drift Angles & Misalignments

		Misalig	gnment (in m	illirad) abo	ut	
Event	Γ.	aunch Inert Axes	ial		Local Axes	
	IX	Γ	$^{1}\mathrm{Z}$	Alt.	Track	Range
RSS Initial SM Misalignment at Earth Launch	3.50	0.41	0.41	1	J	ı
Stable Member RSS Drift Angles						
At SIVB cutoff	0.23	0.32	0.48	0.29	0.32	0.44
At injection burn cutoff	2,59	2.61	2.66	2.64	2.61	2.61
At 1st SPS burn cutoff	2.75	2.77	2.81	2.81	2.77	2.75
13 mins before 2nd SPS	6.33	6.34	6.35	6.35	6.34	6.33
burn ignition At 2nd SPS blirn ignition	6.50	6.51	6.52	6.51	6.51	6.51
At reentry start (400Kft)	6,61	6.62	6.64	6.61	6.62	6.64
At reentry end (24Kft)	6.84	6.81	6.81	6.83	6.81	6.82
Overall RSS Stable Member Misai	ignments					
At SIVB cutoff	3.51	0.52	0.63	3.18	0.52	1.63
At injection burn cutoff	4.36	2.65	2.69	3.09	2.67	4.07
At 1st SPS burn cutoff	4.45	2.80	2.84	2.96	2.82	4.36
13 mins before 2nd SPS	7.23	6.35	6.37	6.42	6.36	7.17
burn ignition		1	i.	C C L	с Ц Ц	CU 2
At 2nd SPS burn ignition	7.38	6.52	6.54		0.03	0.90
At reentry start (400Kft)	7.48	6,63	6.65	1.4.1	0.04 0.04	0.00
At reentry end (24Kft)	7.68	6.82	6.83	7.31	6.84	1.21
-						

TUCTYPTA

5

7-26 (Rev. 1 - 12/66)

CONFIDENTIAL

TABLE 7.17

Propagation of Initial Condition Errors from SPS1 Cutoff

Coast	
Long	
Through	

							Frnor in
		Time	Positi	on Error	Velocit	y Error	Computed
Event		trom SPS1 C. O.	n.	miles	ft/	sec	Time of Flight
		sec	Alt.	Range	Alt.	Range	sec
SPS1 cu	itoff	0	0	. 0	0.48	0, 88	5.55
		3,455	0.79	-0.19	2.09	-0.49	5.55
Apogee		8,380	2.92	-2.02	4.75	-1.50	5.55
•	•	12,455	6,03	-5.29	10.61	-2.16	5.55
13 mm	s.betore	16,361	11.04	-15.65	54.63	-2.51	5.62
SPS2 Ig	mit.	17,141	9.60	-22.2	103.9	-1.80	5.70
Reentr	y Start	17,638	2.92	-27.0	146.7	-5.47	1
SPS1 c	utoff	0	0	0	2.23	-1.22	-0.57
		3,455	0.45	-1.39	1.59	-1.91	-0.57
Apogee		8,380	0.50	-2.79	1.72	-0.78	-0.57
•	, ,	12,455	0.42	-3.11	2.37	0.60	-0.57
I 3 mins SPS2 Ie	s.before	16,361	0.01	-2.18	5.44	3.47	-0.60
SPS2 Ig	mit.	17,141	-0.31	-1.59	6.90	4.31	-0.63
Reentry	r Start	17,638	-0.60	-0.93	6.61	3.77	ſ
SPS1 CI	utoff	0	0.16	0	0	0	3.31
		3,455	0.49	-0.37	1.33	-0.37	3.31
Apogee		8,380	1.65	-1.41	2.86	-0.76	3.31
		12,455	3.44	-3.17	6.25	-1.05	3.32
3 mins PS2 Is	s.before	16,361	6.40	-9.02	31.77	-1.36	3.34
PS2 Ig	mit.	17,141	5.60	-12.80	60.41	-1.15	3.37
{eentr	y Start	17,638	1.77	-15.70	85.50	-3.50	I

⁷⁻²⁷ (Rev. 1 - 12/66)

÷

CONTIDENT

CO TAL

α	
٠	
~	
ЕĴ	
Ч	
р	
4	
H	

Propagation of Initial Condition Errors from Update Point

Computed Time of Error in Flight 0.170 0.176 $\begin{array}{c} 0.274 \\ 0.274 \\ 0.293 \\ \end{array}$ $\begin{array}{c} 0.\ 218 \\ 0.\ 219 \\ 0.\ 228 \end{array}$ $\begin{array}{c} 0.186\\ 0.187\\ 0.207\\ \end{array}$ 0.170sec 1 000 000 Flight Path Angle, $(E)\gamma_{AA}$ mr Error in 0.18 0.12 0.30 0.17 1 ı ı 1 ı ł ı 1 1 ī. ī ı. ī ī ł I. I ı 1 0 0 Range 1.00 0.66 0.24 -0.40 -1.03 0 -0.09 -0.23 -0.43 0.56 00 000 Velocity Error ft/sec -0.38 -0.58 -0.79 -0.98 $\begin{array}{c}
 1.00 \\
 0.83 \\
 0.61 \\
 \end{array}$ 0.31 Track 0000 0 00000 00 0000 0 0 $\begin{array}{c} 0 \\ 0.81 \\ 1.32 \\ 1.86 \\ 5.13 \end{array}$ 0.13 0.31 0.58 3.17 1.00 $\begin{array}{c} 1.19\\ 1.38\\ 1.57\\ 3.00\\ \end{array}$ 0.65 1.11 1.76 7.74 Alt 00000 0 000 at 13 Minutes before SPS2 Ignition Range -865 -1389 -2447 -619 -1007 -1484-2615710 377 -105 -1682 614 538 120 -26140000 -437 00000 1000**Position Error** Track 747 586 -339 9321043 666 feet 00000 740 00000 872 1000 00000 0 0000 $545 \\ 772 \\ 928 \\ 1810 \\ 181$ $\frac{1313}{4386}$ 435 847 730 862 791 1206 000 $\begin{array}{c} 1092 \\ 11113 \\ 1024 \\ 2368 \end{array}$ 00000 00000 Alt Update from Point Time 780 1042 1277 2161 780 $1042 \\ 1277 \\ 2161 \\ 2161 \\ 1042 \\$ 780 1042 1277 2161 780 $1042 \\ 1277 \\ 2161 \\ 2161 \\ 1042 \\$ 780 1042 1277 2161 780 $1042 \\ 1277 \\ 2161 \\ 2161 \\ 1042 \\$ sec Reentry Start Reentry End Reentry Start Reentry End **Reentry Start Reentry Start** Reentry Start Reentry End Reentry Start Reentry End SPS2 Ignit. SPS2 Cutoff SPS2 Ignit. SPS2 Cutoff Update Point Reentry End Update Point Update Point Update Point Reentry End Update Point Update Point SPS2 Ignit. SPS2 Cutoff SPS2 Ignit. SPS2 Cutoff SPS2 Cutoff SPS2 Cutoff SPS2 Ignit. SPS2 Ignit. Event Condition Error of Error of 1 ft/sec Error of 1 ft/sec 1 ft/sec Altitude Altitude Initial Error Range Error of 1000 ft 1000 ft Error 1000 ft Error Rate Range TrackRate Track Rate of of

7-28 (Rev. 1 - 12/66)

TAL

R-537

DISTRIBUTION LIST

Internal

R.	Battin	Α.	Koso	R. Ragan
D.	Bowler	* W.	Kupfer (20)	*J. Rhode
Е.	Copps	L.	Larson	R. Scholten
s.	Copps	G.	Levine	N. Sears
* J.	Dahlen	* D.	Lickly (15)	* P. Seligson (4)
*G.	Edmonds	н.	Little	*J. Shillingford
s.	Felix	G.	Mayo	* M. Sullivan
Р.	Fellemen	R.	McKern	J. Suomala
J.	Fleming (4)	*H.	McOuat	R. Weatherbee
F.	Grant	J.	S. Miller	R. Werner
D.	Hoag	* J.	E. Miller	*W. Widnall
* M.	Johnston	* R.	Morth	L. Wilk
J.	Kernan	J.	Nevins	R. Woodbury
Α.	Kosmala	*P.	Peck	Apollo Library (10)
				MIT/IL Library (3)
MI c/c 12: Do	T Instrumentation Labor o No. American Aviation 214 Lakewood Boulevarc wney, California 90241	rator 1, Inc 1	y (4) .,S&ID	MIT Instrumentation Laboratory Code/EG MIT Building 16 NASA Manned Spacecraft Center Houston, Texas 77058

Downey, California 9 Attn: (TOD)

Attn: (TOD) NASA Manned Spacecraft Center (15) Houston, Texas 77058 Attn: Mr. S. Laquidara - FC Bldg. 45, Room 442

(3)

MIT Instrumentation Laboratory (2) G&N System Laboratory c/o Grumman Aircraft Engineering Corp. LM Project - Plant 25 Bethpage, Long Island, New York Attn: (TOD)

MIT Instrumentation Laboratory (5) P.O. Box 21025 Dennedy Space Center, Florida 32815 Attn: (TOD)

* Names marked with an asterisk (defining "501 distribution") will receive all changes as they are made. Others will receive documents only when initially issued or completely revised. All GSOP recipients will receive the periodically issued record of revisions frontispiece to Vol. I.

D-1

(Rev. 1 - 12/66)

<u>External</u>

A. Metzger (NA	ASA/RASPO)	(1)
AC Electronics	, Div. of GMC	(15)
Kollsman Instru	ament Corp.	(1)
Raytheon Comp	any	(6)
Major Wheeler	(AFSC/MIT)	(1)
NAA RASPO	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Office North American Aviation, Inc. Space & Information Systems Division 12214 Lakewood Boulevard Downey, California	(1)
FO:	National Aeronautics and Space Administration, MSC Florida Operations, Box MS Cocoa Beach, Florida 32931 Attn: Document Control	(3)
HDQ:	NASA Headquarters 600 Independence Ave., SW Washington 25, D.C. 20546 Attn: MAP-2	(6)
AMES:	National Aeronautics and Space Administration Ames Research Center Moffett Field, California Attn: Library	(2)
LEWIS:	National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Attn: Library	(2)
FRC:	National Aeronautics and Space Administration Flight Research Center Edwards AFB, California Attn: Research Library	(1)
LRC:	National Aeronautics and Space Administration Langley Research Center Langley AFB, Virginia Attn: Mr. A.T. Mattson	(2)
GSFC:	National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Attn: Manned Flight Support Office Code 512 Attn: Mr. Paul Pashby Code 554	(2) (2)

L

(Rev. 1 - 12/66)

External (cont'd)		
ERC:	National Aeronautics & Space Administration Electronics Research Center 575 Technology Square Cambridge, Massachusetts Attn: Mr. R. Hayes / Mr. A. Colella	(1)
GAEC:	Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York Attn: Mr. C. Brown (1) Mr. R. Adarnato (1) Mr. B. Sidor (1) Mr. H. Sherman (1) Mr. E. Stern (1R) Mr. R. Fleisig (1) Mr. G. Smith (1) Mr. R. Pratt (1)	(7 + 1R)
NAA:	North American Aviation, Inc. Space & Information Systems Division 12214 Lakewood Boulevard Downey, California 90241 Attn: Apollo Data Requirements Dept. 096-340 Bldg. 3, CA 99	(1 + 1R)
GAEC RASPO:	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York	(1)
AC RASPO:	National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer Dept. 32-31 AC Electronics Division of General Motors Milwaukee, Wisconsin 53201 Attn: Mr. W. Swingle	(1)
WSMR:	National Aeronautics and Space Administration Post Office Drawer MM Las Cruces, New Mexico Attn: BW 44	(2)
MSFC:	National Aeronautics & Space Administration George C. Marshall Space Flight Center Huntsville, Alabama Attn: R-ASTR-5	(20)
KSC:	Flight Crew Training Mail Code HW Kennedy Space Center, Florida Attn: Mr. Frank Hughes	(1)
MSC:	National Aeronautics and Space Administration Manned Spacecraft Center Apollo Document Control Group (PA 2) Houston, Texas 77058	(175 + 2R)
	(Above includes information copy for PD-6, see letter PP-7-66-775)	
BELLCOM		(3)