Bulletin No. 672-21-EAS-208

USER'S GUIDE FOR AGS
BIT-BY-BIT SIMULATOR

August 1968

Prepared Under Contract NAS 9.-5384 for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MANNED SPACECRAFT CENTER
HOUSTON, TEXAS 77058

Prepared by K. B. Robertson

Approved by:

LOCKHEED ELECTRONICS COMPANY

Approved by:
C. F. Lively, Jr.

AGS Software Verification Manager
Systems Analysis Branch
-Guidance and Control Division

Approved by:
A. W. Hambleton

Guidance Applications Section
Flight Mechanics Applications Branch

Approved by:

```
M. T. Cunningham, Chief Flight Mechanics Applications Branch Computation and Analysis Division
```


ACKNOWLEDGMENT

The following persons contributed significantly to the contents of this document:
J. K. McClatchy
J. A. Smith
M. E. Thompson
R. E. Tyler

CONTENTS

Section Page
1.0 INTRODUCTION. 1
2.0 OPERATING PROCEDURE 2
2.1 Simulator Deck Set-Up. 2
2.2 Simulator Logical Units. 4
2.3 User Supplied Program Linkage. 6
2.4 Checkpoint Restart 6
3.0 PREPROCESSOR INPUT. 8
3.1. Programs Option. 9
3.2 Output Option. 10
3.3 CalComp Option 12
3.4 Input Option 14
3.5. Timelist Option. 15
4.0 MAIN PROCESSOR INPUT. 16
4.1 The INDATA Routine 16
4.2 Initialization Blocks 18
5.0 PLOT PROCESSOR INPUT. 31
5.1 Preproc Plot Input 31
5.2 Standard Plot Input 35
5.2.1 Standard Plot Data Description. 35
5.2.2 Standard Plot Variables 38

CONTENTS (continued)

Section Page
6.0 SIMULATOR OUTPUT. 42
6.1 Main Processor User Routines 42
6.2 Standard Print Output 42
6.2.1 Initialization Print. 42
6.2.2 High Frequency Print. 43
6.2.3 Low Frequency Print 44
6.2.4 Standard Print Output Definitions 45
6.3 Trace Format 53
APPENDIX - READ DATA Routine 54

1.0 INTRODUCTION

This user's guide defines the preparation and procedure required to simulate a Lunar Module flight using the Abort Guidance System simulator on the CDC-3800 computer. It is assumed that the user has a sound knowledge of the flight he wishes to simulate and the Abort Guidance System.

The Abort Guidance System (AGS) simulator consists of three logically distinct sections:

- PREPROCESSOR
- MAIN PROCESSOR
- PLOT PROCESSOR

The simulator Preprocessor section adds great flexibility to the AGS simulator and allows the user almost unlimited input, output and control functions. For instance, through the use of the system processor's capability, the user may interface his own special purpose routines with all other simulator routines.

That part of the system which simulates the AGS is the MAIN Processor which includes an Executive system, Interpretive Computer Simulation (ICS) section and an Environments model. Executive system functions are interface controls, editing operations and a restart capability for the AGS simulator. In the ICS section the Abort Electronics Assembly (AEA) is modeled in a bit-by-bit fashion. The Environments model allows the user the choice of a "fast" control model or a slower, more realistic simulation of the LM control system. The latter includes various transfer functions, pulse ratio modulation, jet firing logic, etc.

An extremely flexible plotting program is provided for the simulator by the PLOT Processor. This processor permits the user to plot from any of the variables computed in the simulator system or from a standard set of output parameters.

2.0 OPERATING PROCEDURE

Two distinct modes of operation are available in the AGS simulator:

- Open Loop
- Closed Loop

In the Open Loop mode the AGS simulator operates without the Environments models. This mode is requested by setting an Executive input flag (See Section 4.2). In this mode the AGS input registers contain zero pulse levels and Astronaut interfaces are bypassed. The Open Loop form of simulation helps in checking out the AGS flight program; however, this limited form of simulation is generally sufficient only in the first phases of AGS program checkout.

The Closed Loop mode is used if interaction between the AEA and Environments is desired. This is the normal mode of operation of the simulator and therefore no separate initialization parameter is required.

2.1. Simulator Deck Set-Up

The following deck set-up must be used for operation of the AGS simulator. A complete description of the CDC (Control Data Corp.) control cards may be found in the $3600 / 3800$ DRUM SCOPE Reference Manual. Those cards enclosed in brackets are required but will vary from run to run. Complete information on the generation of these cards may be found in the sections referenced. Cards enclosed in braces are optional but may be included if the corresponding options are desired.

$$
\begin{aligned}
& { }_{9}^{7} \text { JOB } \\
& { }_{9}^{7} \text { DEMAND, } 40000 \mathrm{~B}, 7 \mathrm{MT} \\
& { }_{9}^{7} \text { EQUIP } \\
& {[\text { ALL I/O EQUIP CARDS }] \quad \text { (See Section } 2.2 \text {) }} \\
& { }_{9}^{7} \text { LOAD, } 10 \\
& { }_{9}^{7} \text { RUN }
\end{aligned}
$$

$\left[\begin{array}{l}\text { ALL PREPROC INPUT CARDS } \\ \text { *START } \\ 7 \\ 7 \\ 8\end{array} \quad 8 \quad\right.$ (See Section 3.0)

$$
\begin{aligned}
& { }_{9}^{7} \text { RELEASE, } 10 \\
& { }_{9}^{7} \text { COMPASS, } I=3, x=15
\end{aligned}
$$

$$
{ }_{9}^{7} \mathrm{RUN}
$$

$\left[\begin{array}{l}\text { ALL MAIN PROCESSOR INPUT CARDS } \\ \$\end{array}\right]$ (See Section 4.0) ${ }_{9}^{7}$ RELEASE, 35

(See Section 5.1)

2.2 Simulator Logical Units

The tables below describe the input/output references to equipment in terms of the programmed logical units (L.U.). These units may be controlled by the simulator user with CDC control cards, as indicated by the corresponding codes.

INPUT UNITS - These tapes require release control cards as indicated by their codes:
。
L.U. DESCRIPTION : CODE

10
35.

1
21.
.22
45

PREPROC LOAD \& GO
MAIN PROC LOAD \& GO
AEA MEMORY INPUT
UNIVERSE DATA INPUT
PREPROC PLOT LOAD \& GO
STD. PLOT LOAD \& GO

R1
R2
R2
R2
R3
--

OUTPUT UNITS - These units require equip and release cards as indicated by their codes:

$-\frac{1}{\text { L.U. }}$	DESCRIPTION	CODE
30	GSE TEMELETRY	E1,R2
31	CHECKPOINT DUMP TAPE	E2,R2
5	PREPROC CALCOMP	E3,R3
49	STD. PLOT CALCOMP	E3

An explanation for the various codes listed above is as follows:
Rl - This unit may be released after PREPROC execution.
R2 - This unit may be released after MAIN PROC execution. \because. R3 - This unit may be released after PREPROC PLOT execution.

E1 - This unit may be equipped as a save tape or put on the - drum if so desired.

E2 - This tape must be equipped as a save tape or a working magnetic tape unit.

E3 - This unit must be equipped as a save tape if this option was requested and density set at LO.

S1 - This unit may be equipped as a save tape if it is desired to use these PREPROC generated routines on a later run. In this case PREPROC loading and execution may be bypassed and only this tape is loaded.

S2 - This unit may be saved if it is desired to replot from these plot tapes at a later date. In this case the PLOT Processor may be run as a separate job with the desired input tapes.

2.3 User Supplied Program Linkage

When a special purpose program is to be loaded at object time, the user must construct the following linkage in his subroutine:

SUBROUTINE ANYNAMEI

COMMON/TIME/SIMTIME (50)
DATA ($I=0$)
IF (I.EQ.O) CALL SANDF (I,P,DT,ST)
IF (SIMTIME.LT.ST) GO TO 1
CALL SANDF ($I, P, D T, S T$)
GO TO 2

- 1 CALL SCHED (DT, 8H ANYNAME1, P,1)

2

END

The user's first statements should begin at label 2. This linkage is all that is necessary in order for the routine to be scheduled as any other routine under the *PROGRAMS Preprocessor Option.

2.4 Checkpoint Restart

In order to restart an earlier job, one must use the L. U. 31 output tape from that job as input to the following restart control deck:
${ }_{9}^{7}$ JOB
${ }_{9}^{7}$ DEMAND, $40000 \mathrm{~B}, 7 \mathrm{MT}$
${ }_{9}^{7}$ EQUIP

```
    [ALL I/O EQUIP CARDS]
\({ }_{9}^{7}\) LOAD, 10
\({ }_{9}^{7} \mathrm{RUN}\).
*PROGRAMS
77
88
*START
77
88
\({ }_{9}^{7}\) COMPASS, \(I=3, X=15\)
11
7BANK, (0) ,LC., (1), CHKPNTW
9
\({ }_{9}^{7}\) LOAD, 35
\({ }_{9}^{7}\) RUN
I \(9(4)=\{\) RESTART NUMBER (See Section 4.2) \(\}\)
```


3.0 PREPROCESSOR INPUT

The Preprocessor (PREPROC) is a set of routines which constitute the first of the three processors that comprise the AGS Simulator. Function of the Preprocessor is to construct a set of routines which are executed by the MAIN Processor. From a systems standpoint, the sequence of events is as follows:

1) PREPROC is loaded.
2) Begin execution of PREPROC.
3) Read PREPROC data cards.
4) Write out BCD card image of the routines on LUN 3.
5) Call in the Assembler, assemble routines, and write load and go on LUN 15.
6) Load in MAIN Processor
7) Load LUN 15.
8) Begin execution of MAIN Processor.

PREPROC generates four types of programs: an input program, a variable number of output programs; a "Timelist" program, and a program containing jumps to subroutines, whose entry points have been defined by PREPROC data cards.

The gross format of all PREPROC data sets is identical. A data set is defined as an * OPTION card plus all data cards pertinent to that option and terminated by a standard SCOPE system end of file card (8 6). The first card of the data set contains an $*$ in column l followed by the option name. *PROGRAMS, *OUTPUT, *CALCOMP, *INPUT, *TIMELIST, *START are the only legal first cards. With the exception of the *START option the order of the data sets is immaterial. *START and EOF cards are always last, always needed and serve as the PREPROC data terminator.

Three of the Preprocessor options, *PROGRAMS, *OUTPUT, and *CALCOMP, are interconnected in that the latter two options build programs which are scheduled by the former.

3.1 PROGRAMS Option

Although the program built by use of this option is the most simple, it adds great flexibility to the simulator and therefore is most difficult to explain. By intelligent use of this option the user has essentially unlimited capability to extend, modify or "foul-up" the operation of the simulator. In a sweeping statement any routine may be written, interfaced with any other simulator or system routine through common or call statements, executed during the simulation at a specific time, recalled at a periodic frequency, executed for a set length of time, or operated in a time/priority mode. In production runs this extended capability will probably not be fully utilized. For such runs, "standard" routines, like the standard print, checkpoint, plot dump and termination programs, will be controlled by this option. (See Section 6.1).

I		13	25	37	49

The format for each data card is indicated above. All data cards follow an *PROGRAMS card and are read in fixed format (A8, 4X, 4El2,8). ENTRY POINT is a BCD name (up to 8 characters) of the program to be called and starts in column 1. START TIME is the simulation time the routine is to be entered, and STOP TIME designates the time execution of the routine is to be terminated. DELTA TIME sets the update frequency of the program, and PRIORITY is a number used to reorder the execution of jobs if two or more jobs are scheduled to be executed at the same time. A low number is a high priority, 0 being "Do This Job First".

If it is desired to vary the frequency of execution of any one particular routine during the run, more than one card is required. For this operation the cards (for the particular routine) must be arranged one after the other in increasing start times among the cards following the *PROGRAMS card. An example is given below.

EXAMPLE 1

A special print routine has been defined in the OUTPUT Option called STATEVEC. It is desired that this program be executed every . 02 seconds from l00. to 102. seconds and every 5 seconds from l07. seconds until normal termination, which is assumed to be 500. seconds. Two cards for STATEVEC are needed. The first schedules the high frequency print and the second, the low frequency print. NOTE, THAT FOR THIS OPERATION, THE ORDER OF THESE TWO CARDS MUST BE IN INCREASING START TIMES.

*PROGRAMS

CALCOMP	104.	400.	2.	
STATEVEC	100.	102.	02.	100.
STATEVEC	107.	500.	5.	100.
HIGHFQ	0.	500.	2.	50.
TERMIN	500.			
77				
88				

3.2 OUTPUT Option

This PREPROC option generates a user controlled number of PRINT programs that are executed in the MAIN Processor. Since Standard print routines are available in the MAIN Processor (See Sections 6.1 \& 6.2), the OUTPUT option need be used only when additional parameters are to be printed. The corresponding print programs are scheduled by use of the *PROGRAMS option.

The first data card read is an *OUTPUT card followed by a program name card. The alphanumeric symbol,or name, starts in column 1 and consists of 1 to 8 characters composed of letters, numbers, or special characters $(\neq,<, ., v)$. This symbol may not begin with a numeric character and is also used in the first field of the *PROGRAMS data card which schedules this routine. Each card following the name card defines a variable, format, scale factor and variable name the user wants to print. The variable is defined by giving its location (either decimal or octal) within a common block. When successive variables are within the same common block, the common block name does not have to be updated. Data may begin in any column and must contain no imbedded blanks (except for the BCD variable name). The data card format is shown below.

COMMON BLOCK + OFFSET, BCD NAME, FORMAT, SCALE FACTOR, CONV FACTOR

If the OFFSET is in octal, an 0 must follow the octal digits. BCD NAME can have as many as 8 characters and can consist of any character except a comma (,). Legal FORMAT identifiers are 0 for octal, E for 3800 floating point and I for decimal integer. If B is used for the SCALE FACTOR, the data will be converted from an AGS fractional number to $3800 \mathrm{~F} . \mathrm{P}$. before printing. (It should be obvious that, when a scale factor is used, the format should be E.) The CONV FACTOR consists of up to 12 numeric characters and is the number by which the variable will be multiplied before output occurs. If the SCALE FACTOR is not to be used, then two commas must separate the CONV FACTOR and the FORMAT. An example of the use of the OUTPUT option is given below.

EXAMPLE 2

*OUTPUT

STATEVEC
MEMORY + 3410,LEM X,E,B23
DFILE + 231,ALT,E, ,.00016458
CFILE + 2,FLAG SW,I

```
MEMORY + 3410,OCTAL X,0
    f 3420,ATT Y,E,B23,57.296
    \(+2370, \mathrm{FOO}, 0\)
```

77
88

In the above example an output routine called STATEVEC will print the variables called out and label them with the characters appearing in the BCD name field when the program STATEVEC is executed in the MAIN Processor. However, it should be remembered that STATEVEC must be scheduled under *PROGRAMS.

If it is desired to use different print frequencies for some of the variables, the data cards may be separated into additional blocks under other program names. For instance, if the first two variables in Example 2 are to be printed at a frequency different from the remaining variables, an additional *OUTPUT card and an additional program name card are required, as shown in Example 3 .

EXAMPLE 3

*OUTPUT
STATEVEC
MEMORY + 3410,LEM X,E,B23
DFILE + 231,ALT,E, ,. 00016458
77
88
*OUTPUT
STATEVAR

CFILE + 2,FLAG SW,I

$$
\begin{aligned}
\text { MEMORY } & +3410, \text { OCTAL X,O } \\
& +3420, \text { ATT Y,E,B23,57.296 } \\
& +2370, \text { FOO,O }
\end{aligned}
$$

77
-88
Time intervals corresponding to the desired frequencies are des.ignated on the STATEVEC and STATEVAR data cards listed under *PROGRAMS.

Should it be desired that during a run the print frequency vary for a particular routine, say STATEVEC, then additional STATEVEC data cards are required under *PROGRAMS. . This is exemplified in Example 1 of the previous section.

During execution the variables are printed four across a page and the name of each variable precedes its value. Current simulation time and the routine name (e.g., STATEVEC) are also printed.

3.3 CALCOMP Option

This option generates a routine called CALCOMP which must be scheduled by the user via the *PROGRAMS option. The routine name (CALCOMP) is used on a data card following the *PROGRAMS card. Data cards read by this option are of the same format as those described under the *OUTPUT option except that the name card (second card in the *OUTPUT data set) is deleted. Also, all format options should be E since only floating point data is plotted. Since only one routine (CALCOMP) is constructed by this option, *CALCOMP may appear only once. An example follows:

EXAMPLE 4
*CALCOMP
MEMORY + 550, LEM X,E,B28

+ 560,LEM Y,E,B28
+570, LEM Z,E,B28
TIME + l, TIME,E

```
    DFILE.+ 185,OMEGA X,E
    + 186,OMEGA Y,E
    + 187,OMEGA Z,E
```

77
88

It should be restated that the routine CALCOMP must be scheduled under *PROGRAMS, as shown in Example 1.

Plotting of variables output by the CALCOMP option is controlled by input cards read by the PREPROC Plot Processor. It should also be mentioned that only available from the common blocks of the MAIN Processor. Also, the same plot frequency must be used for all variables selected by the CALCOMP option. This frequency is designated by the appropriate time interval on the CALCOMP data card following *PROGRAMS. Further, this frequency can be made to change at a specific time during a run by inserting a second CALCOMP data card under *PROGRAMS. In this case the first CALCOMP data card must contain data (Start Time, Stop Time, Δt) related to the first plot frequency and the second data card similar data related to the second plot frequency; these two cards must be arranged in the order of increasing start times, as indicated in Section 3.1.

It should be pointed out that only
are available for any one plot. Therefore, the user must carefully examine the plot capabilities before selecting a plot frequency (or frequencies). If the run is very long, he may want to use two frequencies, one high and the other low. The relationship below can be used to determine the plot frequencies or time period for each plot frequency.

$$
\frac{\mathrm{Tl}}{\Delta \mathrm{t}_{1}}+\frac{\mathrm{T} 2}{\Delta \mathrm{t}_{2}} \leq 1600
$$

where T_{1} is the time period for plotting at the frequency related to Δt_{1} and T_{2} is the period for plotting at the frequency related to Δt_{2}. If only one frequency is desired, then the following relationship must be adhered to:

$$
\frac{T}{\Delta t} \leq 1600
$$

where T is the total run time.

3.4 INPUT Option

All of the card input for the MAIN Processor is accomplished by one call to a general Read routine called INDATA. INDATA is a super set of READDATA and contains some special input options developed expressly for the AGS Simulator (See Section 4.1). The PREPROC INPUT option simply extends the number of data arrays that INDATA can read into. If the "standard" input routine is all that is necessary, then this PREPROC option is unnecessary (See Section 4.2). The data cards read by the INPUT option are only for building the extra arguments in the INDATA call. The actual call to INDATA, which reads the simulation data, is done at initial condition time of the MAIN Processor (See Section 4.0).

All extra common block names start in column 1 and require one card each. The total number of arguments in the call cannot exceed 77, octal. The following example indicates how the INPUT option is used:

EXAMPLE 5

It is assumed that the "standard" input program contains four arrays (here; common block and array are synonomous) named FLAGBUF, MEMORY, DFILE, and CFILE. The input program executed in the MAIN Processor will be equivalent to the FORTRAN statement,

CALL INDATA (FLAGBUF, MEMORY, DFILE, CFILE)
If a user wishes to also read into another common block called MYDATA, three PROPROC data cards for this option are necessary. These cards follow the *INPUT card, as shown below.

* INPUT

MYDATA
77
88
The equivalent FORTRAN statement is now
CALL INDATA (FLAGBUF, MEMORY, DFILE, CFILE, MYDATA)
where MYDATA is block number 5.
It is important to note that the INPUT option is not scheduled under *PROGRAMS.

3.5 TIMELIST Option

This PREPROC option allows the user to build a program to set data into any common location at a specified time. Types of data are 3800 floating point, decimal integer, octal, or AGS type with scale factor conversion.

The first data field describes the common block name and either an octal or decimal offset. In the second data field is the time (real simulation time) at which the data is to be entered. The last field contains the data, as follows:

3800 Floating Point - up to 12 numeric characters; decimal point required
Decimal Integer - no decimal point
Octal - octal characters followed by 0
AGS Data - floating point number followed by B and integer scale factor

EXAMPLE 6

*TIMELIST

$$
\begin{aligned}
& \text { MEMORY }+4770,600 \cdot 2,57 \cdot 5 B 10 \\
& \text { DFILE }
\end{aligned} \begin{aligned}
& +99,32 \cdot 5,10 \\
& +452,900 \cdot 2,7760 \\
& +388,10 \cdot 5,599 .
\end{aligned}
$$

$$
\begin{array}{ll}
7 & 7 \\
8 & 8
\end{array}
$$

When using the scale factor option, the number to be scaled must have a decimal point, e.g., 57Bl0 must be written, as 57.Blo.

As in the case of the INPUT option, use of the TIMELIST option does not require scheduling under *PROGRAMS.

4.0 AGS MAIN PRÓCESSOR INPUT

The AGS MAIN Processor is a set of routines which simulate the AGS computer and its environment under executive control. MATN Processor data input is the flight program tape and card input.

At the beginning of execution of the MAIN Processor an initialization subroutine, which first reads in the flight program memory tape and then makes a call to the INDATA input routine, is called. INDATA is a modified form of the generalized input routine READDATA. The use of this routine and the AGS modifications made to it are described in Section 4.1. A complete description of READDATA, along with documentation of several special features, may be found: in the Appendix.

A standard calling sequence has been assembled in the initialization call to INDATA (See Section 4.2.1) but, as noted in PREPROC documentation, the INPUT option may be used to add arguments (common blocks) to this call. The MAIN Processor data cards will be used to insert data to these common blocks in order to initialize the simulator.

4.1 The INDATA Routine

The INDATA routine is used in the MAIN Processor of the AGS simulator to read a set of data cards to initialize the simulator and the flight program. This set of data cards is terminated by reading of a dollar sign (11-3-8 punch). Data fields on these cards begin in column 1 and are usually terminated by reading the last column (column 72) or by encountering a slash ($0-1$ punch). All characters after the slash may be used as comments. A data field usually assumes the following form (although other forms may be used as described in the Appendix):

MC $(S)=$ N1,N2,N3,... / COMMENT
where M specifies the mode of the data. Modes used in the AGS simulator are
OCTAL
I INTEGER

E or F FLOATING POINT (REAL)

C is an integer (Block Number) indicating into which variable (Block Name) in the argument list that data is to be entered (See Section 4.2); if additional arguments are added by use of *INPUT, their corresponding values will begin with the number
after the last one in the standard list and follow in the order of the cards following the *INPUT' card.

S is a positive non zero linear subscript indicating the element of the array associated with it; an 0 following an element number will flag the displacement as octal rather than decimal.

N1, $\mathrm{N} 2, \ldots$ is the numeric field, used in the AGS simulator as described in the next several paragraphs.

DECIMAL FIELDS (I, E, or F)
A decimal field has the following components, the first of which is mandatory:

Principal Part - a decimal number with or without a decimal point. The decimal point, if any, may appear at the beginning of, end of, or within the principal part. If omitted, it is assumed to be located at the right-hand end of the principal part. Omitted for mode I.

Decimal Scale Factor - (optional) consists of the letter E or D followed by a signed or unsigned decimal integer. The value preceding E or D will be multiplied by 10 to this power. The decimal scale factor must follow the principal part. (NOTE: D and E are completely interchangeable in this case). Restricted to mode E or F .

Conversion Factor - (optional) consists of the letter M separating two decimal numbers in a field. The product of the two values will be stored as one element. Restricted to mode E or F.

Binary Scale Factor - (optional) consists of the character B followed by a signed or unsigned decimal integer. The number following B represents the power of 2 which, when 2 to this power is divided into the decimal value preceding the B, will produce an 18 bit fixed point number of AEA specifications. Negative values are represented as two's complement. Restricted to mode E or F.

EXAMPLE 7

E7 $(85)=1188.3,1 E 3,-.987 \mathrm{D}-4 / \mathrm{VX}, \mathrm{VY}, \mathrm{VZ}$
F6 (185) $=1.0$ /FAST CONTROL
F4 (51) $=2.76$ M57.2957 /PITCH DEGREES

$$
\mathrm{F} 2(3070)=3.0 \mathrm{~B} 2,-.5 \mathrm{DB} 2, .25 \mathrm{~B}-1,-.25 \mathrm{~B}-1
$$

```
E2 (230) = 5.23E5B23
E2 (270) = 3.9874B4M2.54B17
```


OCTAL FIELDS (I or 0)

An octal field may be input in either of the following manners for the AGS simulator:

Integer Mode - consists of a string of not more than 16 octal digits ($0-7$), with or without a sign, followed by the letter 0 or K. A positive decimal integer N placed after the 0 or K will cause N zeros to be appended to the right of a positive octal number. The effect of a minus sign preceding the number is to "one's complement" the entire word after zeros are appended. (Note: 0 and K are completely interchangeable in this case).

Octal Mode - operates as described above except the 0 or K need not be used after the number. Obviously, all zeros must be appended to the octal number as input.

EXAMPLE 8

```
I 11 (6) = 357013, 176K13 /BITWORDS
011 (1) = 1042, 377, 1143, 3000 /EXEMPT
```


4.2 Initialization Blocks

The following common blocks have been assembled in the standard initialization call to INDATA:

BLOCK NUMBER		BLOCK NAME
1		FLAGBUF
2		MEMORY
3		BLKI
4		VEHI
5	VEH3	
6	CONT	
7		UNIVR
8	TARGT	
9	TIME	
10		NOERROR
11		DEDABUF
12		SWCOM

The sets of maps on the next several pages describe the MAIN Processor input to these blocks for a nominal simulator run.


```
    2. = CSM ATTACHEO
ENGARM
\(0 .=01:\) 1. \(=O N^{\circ}\)
```

```
PITCH,YAW,RGLL ARE SUCCESSIVE ROTATIONS ABOUT VEHICLE
Y,Z,X AXES (X,Y,Z RIGHT HANDED SYSTEM) RELATIVE TO
INITIAL ORIENTATION OF VEHICLE ALONG LOCAL VERTICAL
I.E. XEODY =YGODY }\times ZEODY
    YEOOY = \stackrel{V}{V}\times\vec{R}
    ZBODY ALONG -POSITION VECTOR TO SPACECRAFT FROM NAJOR GRAV-
    ITATING EODY
UNITS
                        DEGREES
```

WV (1), (2), (3) ARE ANGULAR RATES OF VEHICLE AROUND XGOLY,
YBUDY , BODY UNITS DEGREES/SECONL
DFUELL INITIAL FRACTION (0. TO 1.1 OF DESCENT FUEL LOAD
AFUELL INITIAL FRACTION (O. TO 1.) OF ASCENT FUEL LOAD
FASTS: $0 .=$ SLOW CONTROL 1. $=$ FAST CONTROL
GAI,GAM,GAO ARE INNER, MIDDLE AND OUTER GIMBAL ANGLES
INFUT UNits degrees
EULEGY,Z.X ARE EULER ANGLE ROTATIONS OF THE STABLE MEMBER
RELATIVE TO REFERENCE INERTIAL.
INPUT UNITS DEGREES
TS IS TRANSFORMATION MATRIX FROM REFERENCE INERTIAL TO
STABLE MEMBER COORDINATES
TVS IS TRANS. MATRIX FROM STABLE. MEMBER TO BODY COORDINATES
ASAERR IS FLAG INDICATING THAT ERRORS ARE TO BE
INCLUDED IN ACCFLEFAOMETER AND GYRO MODELS ON $=1$.
PRNTCT LM CONTROLLED PRINT SWITCH. OPTIONS ARE THOSE LIST-
ED IN LM DOCUMENT.
OTPRIN CONTROLS DELTA T BETWEEN LM PRINTS
=0. PRINT EVERY INTEGRATION (WITH PROPER PRNTCT
SETTING)
UNITS - SECONDS
nninno

```
    ADLITIO:AL CELLS WHICH MAY BE INITIALIZEU
13 VEH1 ASAERR FLAG'SET TO 1. WHEN GYRO
    4
                                    AND ACC. BIASES ARE DESIRED
```


5.0 PLOT PROCESSOR

The AGS plot package has been designed as a third processor for the AGS simulator and operates in conjunction with the Preprocessor (PREPROC) and MAIN Processor. The PLOT Processor consists of two separate CALCOMP plot routines. Either of these two plot routines (PREPROC or STANDARD) may be run as a separate job if the dump tapes from a previous simulator run are used as input.

5.1 PREPROC Plot Input

The PREPROC plot routine works in conjunction with the CALCOMP option, described in Section 3.3. Object of this routine is to allow the user a completely flexible plot output function. If this output is desired, a 9 LOAD, 22 and $\}$ RUN card, followed by the data sets described below, is necessary.

A Plot Data Set is defined as the total set of data cards necessary to produce one CALCOMP graph. The graph may have up to three variables plotted against one independent variable. There are two types of data cards within a data set. One card, called the Header Card, contains twelve fields and controls the type of plot, scaling, etc; the other card is a Title Card and contains the BCD information the user wants for labeling the graph and the name used on the X and Y-axes.

THE HEADER CARD

One Header Card is required for each plot; a total of three is required when three plots are displayed on one graph. The format for Header Cards is (2A8, 6I2, 4E12.8). The fields, in sequential order, are as follows:

Card Columns	Name		
$1-8$	XNAME		Description
:---			
The BCD name of the variable to be			
plotted on the X-axis. This name must			
agree with one of the names used in the			
*CALCOMP data cards.			

$\begin{gathered} \text { Card } \\ \text { Columns } \end{gathered}$	Name	Description
17-18	NH 2	A fixed point 80 or 0 depending on whether another Y-axis is to be generated. The first Header Card must contain an 80 since at least one Y axis must always be generated.
19-20	IX	A fixed point number giving the desired length of the X-axis in inches.
$21-22$	IY	A fixed point number giving the length of the Y-axis in inches. If both IX and IY are 0, the plot will be $10^{\prime \prime} \mathrm{x}$ 10".
$23-24$	JJ	JJ Plot
-		0 Line 1 Symbol at each data point N Symbol at each Nth data point -N Only symbol is plotted (no line)
25-26	NP	Number of plots on graph. Fixed point (1, 2, or 3).
27-28	M	M Plot Symbol
		0 Routine selects a different symbol for each function on a given frame Octagon Triangle $+$ X Diamond Up arrow Half closed X Z Y Square Closed X Prime Star
29-40	AI	X-axis minimum. Floating point; if the manual scaling option is used, no point falling outside the desired limits will be plotted.

Card Columns	Name		Description				
$41-52$				\quad A2 \quad	X-axis maximum. Rest same as Al.		
:---	:---	:---					
$53-64$	B1	Y-axis minimum. Rest same as Al.					
$65-76$	B2	Y-axis maximum. Rest same as Al.					

TITLE CARDS

At least three title cards are needed for each graph. If multiple plots are requested (NP), and if a new Y-axis is desired, an additional Y-axis title card is needed. The title cards are read in (10A8) format and a complete card is used for each title. The first card following the Header Card is the graph title, the second is the X-axis label and the third is the Y-axis label.

SCALING OPTIONS

There are two scaling options, Automatic Scaling and Manual Scaling. If the former is to be used, the user enters zero for Al, A2, Bl and B2. Otherwise, he chooses his own limits and sets Al, A2, B1 and B2 accordingly.

SINGLE PLOT

For a single plot (one plot, X vs: Y) the following cards are necessary:

1 Header Card (NP $=1, \mathrm{NH} 2=80$)
1 Plot Title Card
1 X-Axis Title Card
1 Y-Axis Title Card

MULTIPLE PLOTS

If two plots and a single Y-axis are desired, the cards indicated below are required:
lst Header Card ($\mathrm{NP}=2, \mathrm{NH} 2=80$)
1 Plot.Title Card

1 X-Axis Title Card
1 Y-Axis Title Card
2nd Header Card ($\mathrm{NP}=2, \mathrm{NH} 2=0$)
For this case no additional title cards are necessary following the second Header Card.

When multiple plots and multiple Y-axes are desired, additional Y-axis cards are necessary. For example, if the user needs three Y-axes, he must use the following cards:
lst Header Card ($N P=3, N H 2=80$)
1 Plot Title Card
1 X-Axis Title Card
lst Y-Axis Title Card
2nd. Header Card $(N P=3, N H 2=80)$
2nd Y-Axis Title Card
3rd Header Card (NP $=3$, NH2 $=80$)
3rd Y-Axis Title Card

EXAMPLE 9

TIME LEM L 800055150.00 .00. LEM X POSITION VS. TIME

- TIME IN SECONDS

X POSITION IN FEET
LEM X LEM Y 80 O $05115-5 . E+6+5 . E+6-5 . E+6+5 . E+6$ ORBIT PLOT
X POSITION IN FEET
Y POSITION IN FEET
TIME OMEGA Y $80 \begin{array}{lllllllll}0 & 0 & 3 & 0 & 0 & 0 . & 0 . & 0 . & 0 .\end{array}$ BODY RATE $X=$ LINE, $Y=$ OCTAGON, $Z=T R I A N G L E$

TIME IN SECONDS
BODY RATE IN RADIANS/SECOND
$\begin{array}{lllllllllll}\text { TIME OMEGA Y } & 0 & 0 & 0-5 & 3 & 1 & 0 & 0 . & 0 . & 0 .\end{array}$
$\begin{array}{lllllllll}\text { TIME OMEGA } \\ Z & 0 & 0 & 0-5 & 3 & 2 & 0 . & 0 . & 0 .\end{array}$
77
88

A 87 EOF terminates the complete plot data. As can be seen, N data sets can be generated, where $N=8$.

5.2 Standard Plot Input

Variables are plotted by the standard plot routine from a set of parameters output under user control (*PROGRAMS) by the MAIN Processor subroutine PLOTAP. If this output is desired, a 9 LOAD, 45 and a 7 RUN card, followed by the data set described below, is necessary?

5.2.1 Standard Plot Data Description

The standard plot routine plots from a set list (See Section 5.2.2) of variables and produces a set of CALCOMP graphs. Each graph may have up to three variables plotted against one independent variable. A job title card, one plot title card for each graph, the sets of variable request cards, and a job end card are required for standard plot output. Description of these cards and the associated data sets follow :

JOB TITLE CARD
One job title card is necessary for a set of graphs. It is the first card in the data deck.

Card Columns	Name	Description 1
$2-73$	ITITLE	Asterisk in the first column of the card.
Job title to be printed on each page		
of printed output and at the bottom		
of each plot.		

PLOT TITLE CARD
One plot title card is required for each graph. This card is the first card in each plot sequence.
Card
Columns

1 IDS
2-73 GTITLE Grid title to be applied to this plot.

VARIABLE REQUEST CARD

One of these cards must appear for each variable in a particular plot. The first card is reserved for the independent variable and the ones that follow are for the dependent variables. At least two, but no more than four, of these cards must be present for each plot.

Card
Columns Name Description
1-8 NAME Variable name as taken from list of standard variables. Left justified.

NAME to be applied to axis on which variable is presented.

35-49 MIN Minimum value for variable; if blank, it will be computed. (E15.8).

Maximum value for variable; if blank, it will be computed. (El5.8).

Used to determine end of variable requests for particular plot.

1 - another variable follows 0 - last request is this sequence.

JOB END CARD

This card terminates data card input. It must be the last card in the data deck.

Card Columns	Name	
	IDS	
$2-4$	END	Dollar sign in column 1
	Word "END"	

Example 10 shows how the cards are to be arranged for standard plotting.

* CASE 2.7 a SECCHD TPI

SCSM POSITION COORDINATES IN AGS COORDINATE SYSTEA
TIME NISSSION TIME (SEC)
RX $\quad X$ COMPONENT (FEET)
RY Y COMPONENT (FEET)
RZ Z COMPONENT (FEET)
SCSM VELOCITY COORDINATES IN AGS COORDIUATE. SYSTEM
TINE MLSSIOI: TIME (SEC)
$V X \quad X$ COMPCNENT (FT/SEC)
VY Y COMPONENT (FT/SEC)
$V Z \quad Z$ COMPONENT (FT/SEC)
SCSM POSITION COORDINATES IN INERTIAL COORDINATE SYSTEM
TIME MISSION TIME (SEC)
RXI X COMPONENT (FEET)
RYI Y COMPCNENT (FEET)
RZI Z COMPONENT (FEET)
SCSM VELOCITY COORDINATES IN INERTIAL COORDINATE SYSTEM
TIME MISSION TIME (SEC)
VXI X COMPONENT (FT/SEC)
VYI Y COMPONENT (FT/SEC)
VZI 2 COHPCNENT (FT/SEC)
\&LM POSITIUN COORDINATES IN AGS COORDINATE SYSTEM
TIME MISSION TIME (SEC)
LRX X COMPONENT (FEET)
LRY . Y CORPCNENT (FEET)
LRZ 2 COMPONENT (FEET)
\$LM VELOCITY COGRDINATES IN AGS COORDINATE SYSTEM
TIME MISSION TIME (SEC.)
LVX $\quad X$ COMPONENT (FT/SEC)
LVY Y COMPCNENT (FT/SEC)
LVZ $\because \quad Z$ CO:APONENT (FT/SEC)
SLM POSITIUN COORDINATES IN INERTIAL COORDINATE SYSTEM ${ }^{\circ}$
TIME MISSION TIME (SEC)
LRXI X COMPONENT (FEET)
LRYI $\quad Y$ COMPONENT (FEET)
LRZI Z COHPUNENT (FEET)
SLH VELOCITY COORDINATES IN INERTIAL COORDINATE SYSTEM
TIME MLSSION TINE (SEC)
LVXI $\quad X$ COMPONENT (FT/SEC)
LVYI Y COMPONENT (FT/SEC)
LVZI $\quad Z$ COMPONENT (FT/SEC)
\$TOTAL PROPELLANT FLOW RATE
AGS TIME AGS TIME (SEC)
WDOT PROPELLANT FLOW RATE
\$RANGE FROM LM TO CSM
TIVE MISSION TIME (SEC)
RRPR ENVIRORMENTS
RR AGS
SEND

```
    5.2.2 Stondard Plot Variables
    WD - NUMGERS IN THIS COLUMN REFER TO THE POSITION OF
        THE VARIOUS PLOT PARAMETERS IN THE OUTPUT RECORD
        OF THE PLOT TAPE.
    PARAM - MAEMONIC ASSOCIATED WITH EACH VARIABLE. USED TO
    Name Request variable for plot processing.
    UNITS . UNITS OF PARAMETER ON OUTPUT TAPE.
REMARKS - BRIEF DESCRIPTION OF PARAMETERS TO HELP IDENTIFY THEM.
WD PARAM
NO NAME
\begin{tabular}{|c|c|c|c|}
\hline 1 & TINE & SEC & PRESENT TIME \\
\hline 2 & AGS TINE. & SEC & AGS TIME \\
\hline 3 & AIIPR & & LIA COSINE :ATfix (STABLE MEMBER TO ROUY AXIS \\
\hline 4 & AlizPR & & TRASFORMATION - ENVIRONMENTS) \\
\hline 5 & \(A_{13 P R}\) & & \\
\hline 6 & A21PR & & \\
\hline 7 & ACzPR & & \\
\hline 8 & A23PR & & \\
\hline 9 & \(A 31 . P R\) & & \\
\hline 10 & AJćpri & & \\
\hline 11 & A33PR & & \\
\hline 12 & EX & RADIANS & AGS ATTITUDE CONTROL ERROR COMMANOS AEOUT THE \\
\hline 13 & \(E Y\) & & \(X, Y\) AND \(Z\) BODY AXIS \\
\hline 14 & \(E L\) & & \\
\hline 15 & EXP & ARC MIN & ALIGNMENT ERRORS ABOUT \(X, Y\) ANO \(Z\) BOLY AXIS. \\
\hline 16 & EYF & & (AGS VS ENVIRONMENTS) \\
\hline 1.7 & ELP & & \\
\hline 18 & A11 & & LM COSINE MATRIX (STABLE MEMBER TO BOUY AXIS \\
\hline 19 & A12 & & TRANSFORMATION - AGS) \\
\hline
\end{tabular}
20 A13
21 A21
22 ACL2
23 AR3
24 A31
25 AS2
26 A33
27 DAXPR
28 DAYPR
29 DAZPR
30 DAX
31 DAY
32 DAZ
33 OVNPR
34 DVYPR
35 DVZPR
36. DivX
37 DVY
38 DVZ
39 VD1XPR
```

RADIANS RADIANS RADIAIS RADIANS RADIANS RADIANS FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC

ROTATIONAL DISPLACEMENTS OF THE VEHICLE ABOUT ITS X, Y, ANE Z AXIS LAST 20 MSEC (ENVIRONBENTS)

ROTATIONAL DISPLACEMENTS OF THE VEHICLE ABOUT ITS X, Y, AND Z AXIS LAST 20 MSEC (AGS)

VELOCITY GAINED ALONG THE X, Y, AND Z bODY AXIS LAST 20 MSEC (ENVIRONMENTS)

VELOCITY GAINED ALONG THE X, Y, ANO Z BOUY AXIS LAST 20 MSEC (AGS)

Components of the sensed accumulated velocity in

40	VDIYPR	FT/SEC
41.	VOIZPR	FT/SEC
42	Voix	FT/SEC
43	Vujy	FT/SEC
44	vuiz	FT/SEC
45.	TXEA	L.BS
46	TYEA	LBS
47	TZEA	LBS
48	InfigiviL	DEGREES
49	MIDGML.	DEGREES
50	OUTGML	DEGREES
51	ACCEL	FT/S/S
52	DELVS	FT/SEC
53	Lheuli	DEGREES
54	LheUl?	CEGREES
55	Lrieviz	LEGREES
56	AT	FT/S/S
57	WT	LBS
58	DELVGX	FT/SEC
59	DELVGY	FT/SEC
60	DELVGZ	FT/SEC
61	WטOT	LBS/SEC
62	ACCXEA	FT/S/S
63	ACCYBA	FT/S/S
64	ACCZBA	FT/S/S
65	RXPR	FEET
66	RYPR	FEET
67	R $2 P$ PR	FEET
68	VXPR	FT/SEC
69	VYFR	FT/SEC
70	VZPR	FT/SEC
71	RX	FEET
72	RY	FEET
73	Rz	FEET
74	Vx	FT/SEC
75	VY	FT/SEC
76	VZ	FT/SEC
77	RXI	FEET
78.	RYI	FEET
79	RZI	FEET
80	VXI	FT/SEC
81	VYI	FT/SEC
82	VZI	FT/SEC
83	RPR	FEET
84	GAMI	DEGREES
85	PHI	LEGREES
86	RDOTPR	FT/SEC
87	ALTPR	FEET
88	VPR	FT/SEC
89	LÁf:DA	DEGREES
90	PriJP	DEGREES
91	Vripr	FT/SEC
92	LRXPR	FEET
93	LRYPR	FEET
94	LRZPR	FEET
95	LV:PR	FT/SEC
96	LVYPR	FT/SEC
97	LVZPR	FT/SEC
98	LRX	FEET

BODY COORDINATES. UFDRTED EVER.Y 40 MSEC (ENVIRON: ENTS)
COPPONENTS OF THE SENSED ACCU.ULATED VELOCITY IN BODY COORDINATES, UPDATED EVERY 40 MSEC (AGS).

ThRUST ALONG THE X, f. AND Z bODY aXIS (ENVIRONAENTS)

INNER. MIDCLE, OUTER GIMZAL ANGLES NECESSARY FOR TRANSFORFATION TO BODY AXIS COORIIIUATES FROM STABLE MEMBER COORDINATES MAGNITUDE OF TOTAL. ACCELERATION (ENVIFONMENTS) MAGNITUDE GF SENSED ACCUMULATED VELOCITY (EINV) EULER ROTATIONS REOUIRED TO TRANSFORMM X, Y, AND Z AXIS INTO THE BODY AXIS SYSTEM

MAGNITUDE OF TOTAL ACCELERATION ALONG EODY AXIS \cdots AGS TOTAL WEIGHT OF VEHICLE (ENVIRONMENTS) COMPONENTS OF THE VELOCITY YET TO BE GAINED (AGS)

```
TOTAL PROPELLANT FLOW RATE
ACCELERATIONS ALONG THE \(X, Y\), AND \(Z\) BODY AXIS (ENVIRONMENTS)
POSITION COORDINATES COMPUTED IN THE INERTIAL SYSTEM AND TRANSFORMED TO AN AGS ALIGNED COORDINATE SYSTEM -CSM (ENVIRONMENTS)
VELOCITY COORGINATES COMPUTED IN THE INERTIAL SYSTEM AND TRANSFORMED TO AN AGS ALIGNEO COORDINATE SYSTEM -CSM (ENVIRONMENTS)
POSITION COORLINATES IN THE AGS COORDINATE SYSTEMCSM (AGS)
```

VELOCITY COORDINATES COMPUTED IN THE AGS COORDINATE SYSTEM - CSM (AGS)

POSITION COOROINATES IN AN INERTIAL' COORDINATE SYSTEM - CSM (ENVIRONMENTS)

VELOCITY COORDINATES IN AN INERTIAL COORDINATE SYSTEM - CSM (ENVIRONMENTS)

MACNITUDE CF RADIUS VECTOR - CSN (ENVIRONMENTS) AHGLE BETWEEN LOCAL HORIZ. AND INST. VEL. VEC.-ENV. geodetic latitude - CSM
RADIAL VELOCITY - CSM (ENVIRONMENTS)
ALTITUDE ALONG RADIUS VECTOR ABOVE RODY-CSM (ENV) MAGNITUDE OF VELOCITY VECTOR - CSM (ENVIRONNENTS) INST. LONGITULE EASTWARD FROM GFEENWICH - CSM GEOCENTRIC LATITUDE - CS:M
HORIZONTAL VELOCITY - CSM (ENVIRONMENTS)
POSITION COORUINATES COMPUTED IN THE INERTIAL SYSTEM AIID TRANSFORMED TO AN AGS ALIGNED COORDINATE SYSTEM - LM (ENVIRONMENTS VELOCITY COORUINATES COMPUTED IH THE INERTIAL SYSTEM AND TRANSFORMED TO AN AGS ALIGNED COORDINATE SYSTEM - LM (ENVIRONMENTS)
POSITION COORDINATES IN THE AGS COORDINATE SYSTEN-

99	LRY	FEET
100	LRZ	FEET
$10 \pm$	LVx	FT/SEC
102	LVY	FT/SEC
103	LVZ	FT/SEC
104	LRXI	FEET
205	LKYI	FEET
2.06	LR2I	FEET
207	LVXI	FT/SEC
108	LVYI	FT/SEC
109	LVZI	FT/SEC
110	LEPRR	FEET
111.	LGAMI	DEGREES
112	LPHI	DEGREES
113	LRDOTPR	FT/SEC
114	LALTPR	FEET
11.5	R	FEET
110	LVPR	FT/SEC
117	llamoa	DEGREES
118	LPhip	DEGREES
119	LVr:PR	FT/SEC
120	v	FT/SEC
121	A1180	
122	A1260	
123	A13ED	
124	A3180	
125	A32B0	
126	A33fid	
127	GravX	FT/S/S
128	GRAVY	FT/S/S
129	GRAVZ	FT/S/S
130	ALT	FEET
131	PERGPR	N.MI.
132	APOGPR	N.MI.
133	DELVG	FT/SEC
134	PERG	N.MI.
1.35	APOG	N.MI.
136	28 J 1	FT/SEC
137	20J2	FT/SEC
138	28」3	FT/SEC
139	DQSX	FT/SEC
140	DQSY	FT/SEC
141	DQSZ	FT/SEC
142	IIJCL	DEGREES
143	DESNOD	DEGREES
144	ECC	
145	RPERG	FEET
146	VPERG	FT/SEC
147	PERIOD	
148	RAFOG	FEET
149	VÁpog	FT/SEC
150	Trefg	SEC
151	ERX	FEET
152	ERY	FEET
153	ERZ	FEET
154	EVX.	FT/SEC
155	EVY	FT/SEC
156	EVZ	FT/SEC

LM (AGS)
VELOCITY COORDINATES COMPUTED IN THE AGS COOROKNAT: SYSTEM - LM (AGS)

LIA POSITION COORDINATES IN AN INERTIAL COORBLISATE SYSTEM (ENVIRONMENTS)

VELOCITY COORDINATES IN AN INERTIAL COORDINATE SYSTEM - LM (ENVIRONMENTS)

LA MAGNITULE OF RADIUS VECTOR (ENVIRONFNENTS).
LM ANGLE BETWEEN LOCAL HORIZONTAL AND INSTATANEOUS INERTIAL VELOCITY VECTOR (ENV) L/ GEODETIC LATITUDE
LIA RADIAL. VELOCITY (ENVIRONMENTS)
LM ALTIDUDE ALONG RADIUS VECTOR ABOVE BODY (ENV)
LM MAGNITUDE OF RADIUS VECTOR (ENVIRONMENTS)
LM MAGNITUDE OF VELOCITY VECTOR (ENVIRONIAENTS)
LM INST. LONGITUDE EASTWARD FROM GREENWICH
Li: GEOCENTRIC LATITUDE
LN: HORIZONTAL VELOCITY (ENVIRONMENTS)
MAGNITUDE OF THE VELOCITY VECTOR
DIRECTION COSINE FOR DESIRED THRUST DIRECTION OF 2 BODY AXIS (ENVIRONMENTS)

- GRAVITY ACCELERATION COMPONENTS ALONG X, Y, Z bOOY AXIS (ENVIRONMENTS)

ALTITUDE ALONG RADIUS VECTOR ABOVE BODY (AGS)
PERIGEE ALTITUDE AEOVE SPHERICAL REFERENCE BOOY-EN:V
APOGEE ALTITULE ABOVE SPHERICAL REFERENCE BODY -EE:V MAGNITUDE OF VELOCITY YET TO $3 E$ GAINED (AGS)
PERIGEE ALTITUDE ABOVE SPHERICAL REFERENCE BUDY-AGS
APOGEE ALTITUEE ABOVE SPHERICAL REFERENCE BODY -AGS
VELOCITY DESIRED IN EXTERNAL DELTA~V MODE IN HORIZONTAL, OUT OF PLANE, AND RADIAL DIRECTION RESPECTIVELY
VELOCITY GAINED IN EXTERNAL DELTA-V MODE IN AGS INTERNAL COORDINATES

OREIT INCLINATION WITH RESPECT TO EQUAT. PLANE-AGS
ANGLE BETVEEN DESCENDING NODE AND LONG. OF-X AXIS
ORBIT ECCENTRICITY
PERIGEE RADIUS (ENVIRONMENTS)
PERIGEE VELOCITY
OREIT PERIOD
APOGEE RADIUS (ENVIRONMENTS)
APCGEE VELOCITY
TIME TO PERIGEE (AGS)
NAVIGATION ERRORS IN POSITION COORDINATES OF AGS COORDINATE SYSTEM

NAVIGATION ERRCRS IN VELOCITY CCORDIIVATES OF agS COORDINATE SYSTEM

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173 Rne
173 Risite
174 XPCH
175
176
WEDANG
177 XAZ
178 ZAZ
179
OMEGAX
180
181
182
163 CALPAK

Cbetar \because
186 SGAMAR
187 CGAMAR
188
189
190
191
192
193

FT/SEC FT/SEC FEET
FT/SEC
FEET
FT/SEC
FT/SEC
FEET
FT/SEC
FEET
FEET
FEET
FEET
FT/SEC
FT/SEC
FEET
FT/SEC
DEGREES
DEGREES
DEGREES
DEGREES
UEGREES
DEG/SEC
DEG/SEC
DEG/SEC

FEET
FEET
FEET
FEET
FT/SEC
FT/SEC

LOCAL HORIZONTAL VELOCJT: ERROR
altitude rate error
ALTITUDE ERROR
RaOIAL VELCCITY (AGS)
LM DISTANCE OUT OF CSM ORBITAL PLANE (ENVIRONRENTS)
WEDGE VELOCITY (ENVIROWHENTS)
HORIZONTAL VELOCITY (AGS)
LM DISTANCE OUT OF CSM ORBITAL PLANE (AGS)
WEDGE VELOCITY (AGS)
RANGE FROM LM TO CSM (ENNVIRONMENTS)
RANGE RATE FROM LM TO CSM (ENVIRONMENTS)
MAGNITUDE OF THE POSITION ERROR
Rainge from lm to CSM (AGS)
RANGE RATE FROM LM TO CSM (AGS)
MAGNITUDE OF VELOCITY ERROR
RANGE ERROR
Range rate from lm to csm error
ANGLE BETWEEN X AND Z AXIS AND LOCAL HORIZONTAL. PLANE (EIVIRONMENTS)
ANGGLE BETWEEN UNIT VECTOR PERPENDICULAR TO LM AND CSM ORBITAL PLANES (ENVIRONMEIJTS)
ANGLES BETVEEN PROJECTION OF X AND Z BODY AXIS INTO LOCAL HORIZONTAL PLANE AND PROJECTION OF INERIAL VELOCITY VECTOR INTO LOCAL HORIZONTAL PLANE
ANGULAR VELOCITY VECTOR OF NAV BASE IN NAV BASE COORDINATES (ENVIRONMEHTS)

SINE OF EULER ANGLE ALPHA REGISTER USED FOR CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
COSINE OF EULER ANGLE ALPHA REGISTER USED FOR CONTROL OF TOTAL ATTITUDE DISFLAY (AGS)
SINE OF EULER ANGLE BETA REGISTER USED FOR CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
COSINE OF EULER ANGLE BETA REGISTER USED FOR CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
SIne of euler angle. gamma register used for COINTROL. OF TOTAL ATTITUDE DISPLAY (AGS)
COSINE OF EULER ANGLE GAMMIA REGISTER USED FOR CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
ROTATIONAL ATTITUDE ERRORS ABOUT THE XP.Y, AND Z BODY AXIS REGISTERS USED FOR CONTKOL OF THE VEHICLE AND FOR DISPLAY (AGS)
ALTITU论 REGISTER FOR CONTROL OF NAV DISPLAYS (AGS)
ALTITUDE RATE REGISTER FOR CONTROL OF NAV DISP -AGS
LATERAL VELOCITY REGISTER FOR CONTYOL OF WAV DISPLAYS - AGS

6.0 SIMULATOR OUTPUT

6.1 MAIN Processor User Routines

Several routines have been written and incorporated in the AGS MAIN Frocessor for user controlled functions. The scheduling of these routines is controlled by the user via the *PROGRAMS Preprocessor option. Listed below are names of the routines currently available and a brief description of their functions.

- CHKPNTW - checkpoint write This routine will generate checkpoint dumps for restart of the simulator.
- HIGHFQ - high frequency standard print This routine prints out the standard high frequency print variables.
- LOWFQ - low frequency standard print This routine prints out the standard low frequency print variables.
- MEMDUMP - memory dump This routine provides an octal dump of AEA memory. (No delta time)
- PLOTAP - standard plot tape output This routine will dump out on tape the variables in the standard plot output for plotting in the PLOT Processor.
- TERMIN - termination routine This routine will terminate the MAIN Processor execution. (No delta time).

6.2 Standard Print Output

Parameters listed under Initialization Print will be printed at the beginning of the simulation run. Those parameters listed under High Frequency Print and Low Frequency Print are controlled by the routines HIGHFQ and LOWFQ, respectively.

6.2.1 Initialization Print

CSM ORBITAL PARAMETERS

AP \varnothing GPR	PERGPR	RAP $\varnothing G$	RPERG	PERI $\varnothing D$
VAPOG	VPERG	ECC	INCL.	DESN

LM RI TO SM EULER ANGLES

EULERI
EULER2 EULER3
6.2.2 High Frequency Print

AGS FLAGS, SWITCHES, AND REGISTERS (cont.)

BRNCON	DISCW1	DISCW2	SALPAR	CALPAR
SBETAR	CBETAR	SGAMAR	CGAMAR	EXR
EYR	EZR	ALTR	ALTRTR	LATVR
TELEMR	DEDA R	DEDA R		

6.2.3 Low Frequency Print

LM (cont.)

Al3BD	A33BD	GRAVZ	APØGPR	APØG
28J1	DQSX	INCL	RPERG	RAPØG
28 J 2	DQSY	DESNØD	VPERG	VAPØG
28 J 3	DQSZ	ECC	PERIØD	TPERG
ERX	EVX	EVH	RDØT	VH
ERY	EVY	EALTRT	YPR	Y
ERZ	EVZ	EALT	VYOPR	VYO
RRPR	RR	RRE	WEDANG	
RRRTPR	RRRT	RRRTE	XPCH	XAZ
RMSER	RMSEV			ZPCH

6.2.4 Standard Print Output Definitions

NOTES: A. This letter following a definition	
indicates the related parameters	
are calculated in the ENVIRONMENTS	
	simulation.

B. This letter following a definition indicates the related parameters are calculated in the AGS flight program.

Mnemonic \quad Definition

28J1, 28J2
28J3

All, Al2
Al3.
All $B D, A 12 B D$, Al3BD

A31BD, A32BD, A33BD

Velocity desired in the external ΔV mode in the horizontal, out of plane, and radial direction, respectively. (feet/sec)

LM cosine matrix (stable member to body axis transformation). ${ }^{\text {B }}$

Direction cosine for the desired thrust direction of the X body axis.

Direction cosines for the desired thrust direction of the Z body axis.

Mnemonic	Definition
AllPR, Al2PR,	LM cosine matrix (stable member to body
Al3PR, A21PR,	axis transformation).A
A22PR, A23PR,	
A31PR, A32PR,	
A33PR	
DEL.T2	Staged Flag
DEL 5	Altitude hold flag.
DEL 20	- LOGIC flag for engine control.
DEL 21	Lunar surface flag.
E1	Flag indicating descent engine on or off. ${ }^{\text {B }}$
E2	Flag indicating ascent engine on or off. ${ }^{\text {B }}$
EXTI	Flag indicating that PGNCS commanding descent engine on or off.
EXT2	Flag indicating that PGNCS commanding ascent engine on or off.
MU8	Ullage counter.
MU10	Minor cycle counter.
S00	AGS function selector
S07	Reference frame selector for external ΔV mode.
Sl0	Guidance mode selector.
S11	RCS - DPS/APS selector.
SI 6	CDH Apsidal selector.
S17	CSI elliptical/circular orbit logic.
S507	Orient Z body axis to thrust axis.
S623	Crew selection of steering vector.
ACCEL	Magnitude of the total acceleration (ft/sec ${ }^{2}$).

Mnemonic	Definition
DEDA.AD	Data Entry and Display Assembly (DEDA) address last entry or readout.
DEDADT	DEDA data last entry or readout. ${ }^{\text {B }}$
DEDA R	Data Entry and Display Assembly (DEDA) register, a four bit input and output register which communicates serially with the DEDA and the AEA.
DELVG	Magnitude of the velocity yet to be gained (feet/sec).
DELVGX, DELVGY, DELVGZ	Components of the velocity yet to be gained (feet/sec). ${ }^{\text {g }}$
DELVS	Magnitude of the sensed accumulated velocity (feet/sec).A
DESNOD	Angle between the descending node and the longitude of the X axis in the AGS reference coordinate system (degrees).
DISCW	Discrete word 1 , an 8 bit AEA input register.
DISCW2	Discrete word 2, a 7 bit AEA input register.
$\begin{aligned} & \text { DQSX, DQSY, } \\ & \text { DQSZ } \end{aligned}$	Velocity gained in the external ΔV mode in AGS inertial coordinates. (feet/sec).B
$\begin{aligned} & \text { DVX, DVY, } \\ & \text { DVZ } \end{aligned}$	Velocity gained along the X, Y, and Z body axis last 20 msec (feet/sec). B
DVXPR, DVYPR, DVZPR	Velocity gained along the X, Y, and Z body axis last $20 \mathrm{msec}(f e e t / \mathrm{sec}) . \mathrm{A}$
EALT	Altitude error (feet).
EALTRT	Altitude rate error (feet/sec).
ECC	Orbit eccentricity.
$\begin{aligned} & \text { ERX, ERY, } \\ & \text { ERZ } \end{aligned}$	Navigation errors in position coordinates of AGS coordinate system (feet).

Mnemonic
EULERI,
EULER2,

EULER3 \quad| Definition |
| :--- |
| First, second and third Euler rotations |
| required for transformations to Stable |
| |
| Member coordinates from Reference Inertial |
| coordinates (degrees). |

Mnemonic	Definition
OMEGAX, OMEGAY OMEGAZ	Angular velocity vector of nav base in nav base coordinates degrees/sec.A
PERG	Perigee altitude above the spherical reference body (nautical miles).
PERGPR	Perigee altitude above the spherical reference body (nautical miles). A
PERIOD	Orbit period (seconds).
PHI	Geodetic Latitude (degrees).
PHIP	Geocentric Latitude (degrees).
RAPOG	Apogee radius (feet). A
R	Magnitude of the radius vector (feet). ${ }^{\text {B }}$
RDøT	Radial Velocity (feet/sec). ${ }^{\text {B }}$
-RDØTPR	Radial Velocity (feet/sec).A
RMSER	Magnitude of the position error (feet).
RMSEV	Magnitude of the velocity error (feet/sec).
RPERG	Perigee radius (feet). ${ }^{\text {A }}$
RPR	Magnitude of the radius vector (feet). ${ }^{\text {A }}$
RR	Range from LM to CSM (feet). ${ }^{\text {P }}$
RRE	Range error (feet).
RRPR	Range from LM to CSM (feet).A
RRRT	Range rate from LM to CSM (feet/sec). ${ }^{\text {B }}$
RRR'TE	Range rate from LM to CSM error (feet/sec).
RRRT'PR	Range rate from LM to CSM (feet/sec). ${ }^{\text {A }}$
RX, RY, RZ,	Position coordinates in the AGS coordinate system (feet). ${ }^{\text {B }}$
RXI, RYI, RZI	Position coordinates in an inertial coordinate system (feet).A

Mnemonic	Defjnition
RXPR, RYPR, RZPR	Position coordinates computed in the inertial system and transformed to an AGS aligned coordinate system (feet).A
SALPAR	Sine of the Euler angle alpha register which is used for control of the Total Attitude Display.
SGAMAR	Sine of Euler angle gamma register which is used for control of the Total Attitude Display.
STAGED	Flag indicating that the descent engine has been staged.
TELEMR	Telemetry Register, a 24 bit shift register which is used to output serial telemetry data.
TIME	Present time (sec). ${ }_{\text {a }}$
TPERG	Time to perigee (sec). ${ }^{\text {B }}$
TXBA, TYBA,	Thrust along the X, Y and Z body axis (pounds).A
V	Magnitude of the velocity vector ($\mathrm{ft} / \mathrm{sec}$). ${ }^{\text {B }}$
VAPOG	Apogee velocity ($\mathrm{ft} / \mathrm{sec}$).
$\begin{aligned} & \text { VD1X, VD1Y, } \\ & \text { VD1Z } \end{aligned}$	Components of the sensed accumulated velocity in body coordinates, updated every $40 \mathrm{msec}(\mathrm{ft} / \mathrm{sec})$.
VDIXPR, VDIYPR, VDIZPR	Components of the sensed accumulated velocity in body coordinates, updated every 40 msec in $A G S$ ($\mathrm{ft} / \mathrm{sec}$).
VH	Horizontal velocity (ft/sec). ${ }^{\text {B }}$
VHPR	Horizontal velocity (ft/sec).A
VPERG	Perigee velocity ($\mathrm{ft} / \mathrm{sec}$)
VX, VY, VZ	Velocity coordinates computed in the AGS coordinate system ($\mathrm{ft} / \mathrm{sec}$).

Mnemonic	Definition
VXPR, VYPR, VZPR	Velocity coordinates computed in the inertial system and transformed to an AGS aligned coordinate system ($f t / \mathrm{sec}$). A
VXI, VYI, VZI	Velocity coordinates in an inertial coordinate system $(\mathrm{ft} / \mathrm{sec})^{A}$
Y	Wedge distance, LM distance out of CSM orbital plane (feet).
YPR	- Wedge distance, LM distance out of CSM orbital plane (feet).A
WDøT	Total propellant flow rate (pounds/sec). ${ }^{\text {A }}$
WEDANG	Wedge angle, angle between unit vectors perpendicular to CSM and LM orbital planes (degrees). ${ }^{\text {A }}$
VYO	Wedge velocity (ft/sec). ${ }^{\text {B }}$
VYOPR	Wedge velocity (ft/sec). ${ }^{\text {a }}$
XAZ	Angle between the projection of the X body axis into the local horizontal plane and the projection of the inertial velocity vector into the local horizontal plane (degrees).
XPCH	Angle between X body axis and local horizontal plane. (degrees)A
ZAZ	Angle between the projection of the Z body axis into the local horizontal plane and the projection of the inertial velocity vector into the local horizontal plane. (degrees). A
ZPCH	Angle between Z body axis and local horizontal plane (degrees).A

6.3 Trace Format

The Trace consists of nine output parameters. They are as follows:

1) Instruction address (octal)
2) Instruction name
3) Operand address (octal)
4) Contents of the A-register (octal)
5) Contents of the Q-register (octal)
6) Contents of the operand address (octal)
7) Contents of the index register
8) The overflow indicator (1 means overflow)
9) Contents of the minor cycle counter (decimal)

These parameters represent the state after instruction execution.
EXAMPLE 11

LOC	NAME	OP.ADD	AREG	QREG	OP.	INDX	O.F.	CYCLE
7010	ADD	0760	377600	001000	210010	0	1	400

APPENDIX
 THE READ DATA ROUTINE

Identification

READ DATA, Mnemonic Input Routine
CDC $3600 / 3800$ COMPASS Subroutine
D. H. Hay and Bruce Johnson, May 20, 1964

Computation and Analysis Division
Manned Spacecraft Center

Acknowledgement

This subroutine is a direct translation of the IBMAP subroutine, SG RDAT, developed by Mr. Robert P. Crabtree of the Manned Spacecraft Center. The FøRTRAN calling sequences and input data card formats are identical for the two routines. Conversion algorithms and diagnostic procedures are similar.

Purpose

This subroutine allows the FØRTRAN 63 or CØMPASS user to enter data into his program at execution time without the use of, or the restrictions normally imposed by, formats. As many or as few variables as desired may be entered with each data set. Variables not entered will not be changed in value but will remain as they were before the subroutine was called. The data can be either punched in a free field or in a fixed field as all blanks are ignored. Legal modes include Integer, Real (either "F" type or "E" type), Complex, Double Precision, Alphabetic (BCD or HOLLERITH), and Octal. Optional exits are provided allowing the user to gain control if an error in the data cards or an end-of-file on the input tape is encountered.

Restrictions

This subroutine can be used only on the CDC 3600/3800 under the SCOPE/SCAMS Operating System. The size of the numbers and the accuracy retained on floating point numbers are limited only by the size of the word and the floating point/double precision hardware associated with the CDC $3600 / 3800$.

Method

Standard double precision conversion techniques are employed throughout. Where a single precision value is desired, only the single precision result is kept, and in the case of the floating point numbers, the most significant portion is rounded before being stored.

Error checks are liberally distrjbuted throughout the conversion code to insure that all ill-formed data cards are detected rather than improperly converted.

Usage

1. Calling Sequence

CALL RDATA (ARG $\left.{ }_{1}, A R G_{2}, \ldots, A R G_{n}\right)$
Where $A R G_{1}, A R G_{2}, \ldots, A R G_{n}$ are variables or names of arrays into which data is to be entered. The name READ DATA may be substituted for RDATA in the above sequence.
2. Data Set

A Data Set is a card or a group of cards which will be read with one call of the RDATA subroutine. A Data Card is usually terminated after the last column (column 72) has been scanned but may be terminated prior to this by placing a slash (0-1) in the column where termination is desired. All punches to the right of the slash will be ignored, and the scan will continue with the first column of the next data card. A Data Set is terminated when the scan encounters a dollar sign (11-3-8); the rest of the data card is ignored and control is returned to the first executable statement after the "CALI, RDATA" statement.
3. Data Fields

A Data Field is a continuous set of columns on a data card which causes one value to be entered into the calling program. A Data Field starts in column l of the data card or in the first column following the comma which has terminated the previous Data. Field and is terminated by a comma, slash, dollar sign or the end of the data card (column 72). A Data Field cannot be split between two data cards and may assume one of the following forms:

$$
\begin{aligned}
& \text { 1. } M C(S)=N, \\
& \text { 2. } M C=N, \\
& \text { 3. }(S)=N, \\
& \text { 4. } N, \\
& \text { 5. },
\end{aligned}
$$

where M specifies the Mode of the variable or array into which the data is to be entered as follows:

I	Integer
E or F	Real (Floating Point)
C	Complex
D	Double Precision
C	is an integer indicating into which variable in the argument list that data is to be entered (i.e., a "l" would indicate the variable which corresponds to ARG_{1} a "2" to $A R G_{2}$, etc.)
S	is a positive non zero linear subscript - indicating the element of the array associated with it. This subscript will be automatically doubled internally for complex and double precision numbers so that the linear subscript notation will agree with that used by FORTRAN 63.
N	is a numeric field, as described under Section 4.

A Data set must start with a Data Field of form (1) or (2) (see above). If form (2) is used for arrays, S will auto\because matically be assumed to be 1 . Once an array (MC) has been defined, subsequent fields of form (4) will cause the value of the fields to be entered into consecutive elements of the array defined. An empty field (two commas, punched in consecutive columns or separated by blank columns) will cause the corresponding array element to be left at its previous value (i.e., it will be skipped). The linear subscript may be redefined at any time by using form (3) without renaming the mode and argument count. As indicated above, all data fields should be separated by commas. There should not be a comma after the last data field on the card, however, because the end of a card acts as an implied comma and an additional comma would produce an empty field between it and the end of the card.
4. Numeric Fields
a. Decimal Fields

A decimal field has two components, the second of which is optional:

1. The Principal Part - a decimal number with or without a decimal point. The decimal point, if any, may appear at the beginning of, end of, or within the principal. part. If omitted it is assumed to be located at the right-hand end of the principal part.
2. The Exponent Part - consists of the letter E or D followed by a signed or unsigned decimal integer. The Exponent part must follow the Principal Part. (Note: the "D" and "E" are completely interchangeable in this case.)
b. Octal Fields

An octal field consists of a string of not more than 16 (or 32 for double precision variables) octal digits (0 through
7) with or without a sign and followed by the letter \varnothing.

A positive decimal integer N placed after the \varnothing will cause N zeros to be appended to the right of a positive octal number. The effect of a minus sign is to ones complement the entire word after the zeros are appended. For instance, -17øl0 would appear as

7777607777777777
while $17 \emptyset 10$ would appear as
0000170000000000
The number $-6 \emptyset 15$ would appear as

177777777777777

whereas $6 \emptyset 15$ becomes

60000000000000000

For double precision variables the minus sign will cause both the high and low order parts of the number to be complemented so that -l01øl5 would produce the two words

777777777777767
677777777777777
The high order part of the octal number is placed in the most significant portion of the double precision variable locations.
c. Alphabetic Fields

Alphabetic information may be read into Real or Complex variables (not Integer or Double Precision) through the use of an Alphabetic Field which may take on one of the following forms:

1. $n H x x x \ldots x x x$,
2. Htxxx... $x x x t$,

Form (1) is recognized by the presence of a count (n) preceding the "H". In this case the n characters (here blanks are treated as legitimate alphabetic characters) following the " H " are taken as a hollerith string. Form (2) is recognized by the lack of a count (or a zero count) in front of the " H ". In this case the character punched in the first column after the "H" is taken as a termination character (t) and all characters following the hollerith string.

Any legal hollerith character can be used as a termination character except, of course, the termination character cannot appear in the hollerith string.

Hollerith strings are broken down into eight characters per word and stored in ascending elements of the associated array. If the last word is not full, the characters are left adjusted and trailing blanks are added on the right. Alphabetic fields may be continued from card to card, column 1 being considered adjacent to column 72 of the preceding card. This is the only exception to the rule that fields cannot be split between cards. Alphabetic fields, like all other fields, should always be followed by a comma, slash, dollar sign, or end of card.
5. Special Features

To facilitate keypunching, the asterisk (ll-4-8) may be used to denote subscription. That is $M C * S=\ldots$ is equivalent to $\operatorname{MC}(S)=\ldots$, is equivalent to $(S)=\ldots$.

The letter "K" may be used in place of the letter " \varnothing " in Octal fields to eliminate the confusion caused by the similarity between the letter "Ø" and the aigit "0".

6. Alternate Exits

Normally, the RDATA subroutine, upon detecting an end-of-file on the input tape, will bring out the comment, "**ALL DATA PROCESSED**," and terminate execution through the subroutine EXIT. This action may be modified by the following sequence in the calling program:

ASSIGN i to n
CALL SETEOF (n)
where i is a statement number and n is a non-subscripted integer variable. After this sequence has been executed, an end-of-file on the input tape will cause control to be passed to statement number i without printing the comment. In addition, the input tape will be back-spaced so that subsequent entries to this (or any other input) routine will again cause an end-of-file condition. The sequence

CALL SETEOF (0)
will cause the end-of-file action to be reset to its normal state.

When a conversion error (illegal character, overflow, etc.) is detected, the normal procedure is to print out the bad card along with a comment describing the error condition, and then terminate execution through the subroutine Q8QERROR. This action may be modified by the following sequences in the calling program:

ASSIGN i to n
CALL SETERR (n)
After this sequence has been executed, an error will still cause the comments to be printed, but control will be passed to statement 1 rather than Q8QERROR. The sequence

CALL SETERR (0)
will cause the error action to be reset to its normal state.
7. Alternate Input Unit

Normally, logical unit sixty is used to input data cards. This condition may be modified by the following sequence,

CALL SET UNIT (n)

This call will cause data to be read from logical unit n until the input unit is re-designated by another SET UNIT call.

8. Example

Program:
COMPLEX CXI
DOUBLE PRECISION TERM
DIMENSION X(50), FMT(24), Y(50)
100 CALL RDATA (N, X, Y, CXI, TERM, FMT, ALPHA)
WRITE (6, FMT)

Data Cards:
$\mathrm{F} 6=\mathrm{H}^{*}(16 \mathrm{H} 1 \mathrm{EXAMPLE}$ PROGRAM)*
\because Il $=\dot{3} /$ NUMBER OF DATA POINTS FOR THIS CASE
$\mathrm{E} 2=17.96347,, 1.732 \mathrm{E} 10, \mathrm{C} 4=1,2, \mathrm{E} 3=-1.414, \mathrm{D} 5=$
3.14159265358979328
$\mathrm{E} 3(5)=1 \mathrm{E}-6,1 \mathrm{E}-7,1 \mathrm{E}-9,(20)=1 \mathrm{E}-21 \quad$ \$

This program in conjunction with this data set will cause the following to be true:

FMT $(1)=(16 \mathrm{HIE}$
FMT (2) = XAMPLE
(alphabetic information)
FMT (3) = PROGR
FMT (4) = AM)
N . $=3$ (integer)
$X(1)=0.17963470 \mathrm{E} 02$

```
                                    (real)
. X(3) = 0.17320000 E I1
    CX1. = 0.10000000 E O1, 0.20000000 E O1 (complex)
    TERM = 0.31415926535897932 D O1 (double precision)
    Y(1) =-0.14140000 E O1
    Y(5) = 0.10000000 E -05
    Y(6) = 0.10000000 E -06 (real)
    Y(8) = 0.10000000 E -08
    Y(20) = 0.10000000 E -20
```

All other variables and array positions will remain as they were before RDATA was called.

