Bulletin No. 672-21-EAS-208

pretining

USER'S GUIDE FOR AGS BIT-BY-BIT SIMULATOR

August 1968

Prepared Under Contract NAS 9-5384 for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS 77058

Prepared by K. B. Robertson

Approved by:

J. Æ. Earl, Project Leader AGS Verification Testing LOCKHEED ELECTRONICS CO.

LOCKHEED ELECTRONICS COMPANY HOUSTON AEROSPACE SYSTEMS DIVISION HOUSTON, TEXAS 77058

NASA-MSC APPROVALS

Approved by:

C. F. Lively, Jr. AGS Software Verification Manager Systems Analysis Branch .Guidance and Control Division

Approved by:

A. W. Hambleton Guidance Applications Section Flight Mechanics Applications Branch

Approved by:

M. T. Cunningham, Chief Flight Mechanics Application's Branch Computation and Analysis Division

ACKNOWLEDGMENT

South Ro

The following persons contributed significantly to the contents of this document:

J. K. McClatchy J. A. Smith M. E. Thompson R. E. Tyler

iii

CONTENTS

Sect	ion					ž	Page
1.0	INTRO	DDUCTION	•	•	·	•	. 1
2.0	OPERA	ATING PROCEDURE			•	•	2
	2.1	Simulator Deck Set-Up		•	•		2
24	2.2	Simulator Logical Units		•	•	•	4
	2.3	User Supplied Program Linkage	•.	•	•	•	6
	2.4	Checkpoint Restart	•		·	÷	6
3.0	PREPR	ROCESSOR INPUT					8
	3.1 .	Programs Option		•	•	4 4	9
	3.2	Output Option		•		•	10
	3.3	CalComp Option	•	•	•		12
	3.4	Input Option			•		14
	3.5	Timelist Option	•	•	•	•	15
4.0	MAIN	PROCESSOR INPUT	•		•		16
	4.1	The INDATA Routine			•	•	16
	4.2	Initialization Blocks	•	٠	•	•	18
5.0	PLOT	PROCESSOR INPUT					31
	5.1	Preproc Plot Input	•	•	•	•	31
	5.2	Standard Plot Input		a.			35
		5.2.1 Standard Plot Data Description.		•	•	•	35
*8		5.2.2 Standard Plot Variables					38

CONTENTS (continued)

Sect:	ion	Pa	ge
6.0	SIMU	LATOR OUTPUT	2
	6.1	Main Processor User Routines	2
5.8	6.2	Standard Print Output	2
		6.2.1 Initialization Print 4	2
		6.2.2 High Frequency Print 4	3
		6.2.3 Low Frequency Print	4
		6.2.4 Standard Print Output Definitions 4	5
٥	6.3	Trace Format	3
APPE	NDIX	- READ DATA Routine	4

1.0 INTRODUCTION

This user's guide defines the preparation and procedure required to simulate a Lunar Module flight using the Abort Guidance System simulator on the CDC-3800 computer. It is assumed that the user has a sound knowledge of the flight he wishes to simulate and the Abort Guidance System.

The Abort Guidance System (AGS) simulator consists of three logically distinct sections:

- PREPROCESSOR
- MAIN PROCESSOR
- PLOT PROCESSOR

The simulator Preprocessor section adds great flexibility to the AGS simulator and allows the user almost unlimited input, output and control functions. For instance, through the use of the system processor's capability, the user may interface his own special purpose routines with all other simulator routines.

That part of the system which simulates the AGS is the MAIN Processor which includes an Executive system, Interpretive Computer Simulation (ICS) section and an Environments model. Executive system functions are interface controls, editing operations and a restart capability for the AGS simulator. In the ICS section the Abort Electronics Assembly (AEA) is modeled in a bitby-bit fashion. The Environments model allows the user the choice of a "fast" control model or a slower, more realistic simulation of the LM control system. The latter includes various transfer functions, pulse ratio modulation, jet firing logic, etc.

An extremely flexible plotting program is provided for the simulator by the PLOT Processor. This processor permits the user to plot from any of the variables computed in the simulator system or from a standard set of output parameters.

2.0 OPERATING PROCEDURE

Two distinct modes of operation are available in the AGS simulator:

- Open Loop
- Closed Loop

In the Open Loop mode the AGS simulator operates without the Environments models. This mode is requested by setting an Executive input flag (See Section 4.2). In this mode the AGS input registers contain zero pulse levels and Astronaut interfaces are bypassed. The Open Loop form of simulation helps in checking out the AGS flight program; however, this limited form of simulation is generally sufficient only in the first phases of AGS program checkout.

The Closed Loop mode is used if interaction between the AEA and Environments is desired. This is the normal mode of operation of the simulator and therefore no separate initialization parameter is required.

2.1 Simulator Deck Set-Up

The following deck set-up must be used for operation of the AGS simulator. A complete description of the CDC (Control Data Corp.) control cards may be found in the 3600/3800 DRUM SCOPE Reference Manual. Those cards enclosed in brackets are required but will vary from run to run. Complete information on the generation of these cards may be found in the sections referenced. Cards enclosed in braces are optional but may be included if the corresponding options are desired.

(See Section 2.2)

ALL PREPROC INPUT CARDS *START 7788 (See Section 3.0) 7RELEASE, 10 $\frac{7}{9}$ COMPASS, I = 3, X = 15 7 9FTN, ANY USER SUPPLIED SUBPROGRAMS (See Section 2.3) SCOPE 7 9LOAD 11 0 7 9BANK, (0),LC.,(1),CHKPNTW 7₉LOAD,35 ZLOAD,15 7 9RUN ALL MAIN PROCESSOR INPUT CARDS (See Section 4.0) \$ 7RELEASE, 35 11 0 79BANK, (1), /POINT/ 7 9LOAD,22 7₉RUN, (See Section 5.1) ANY PREPROC PLOT DATA CARDS

710AD,45 (See Section 5.2) RUN, ANY STANDARD PLOT DATA CARDS

2.2 Simulator Logical Units

The tables below describe the input/output references to equipment in terms of the programmed logical units (L.U.). These units may be controlled by the simulator user with CDC control cards, as indicated by the corresponding codes.

INPUT UNITS -	- These tapes by their co	require release control c les:	ards as	indicated	
<u>Ľ.U.</u>		DESCRIPTION		CODE	
10		PREPROC LOAD & GO		Rl	
35.		MAIN PROC LOAD & GO		R2 .	1992
1	· · · ·	AEA MEMORY INPUT		R2 ·	
21		UNIVERSE DATA INPUT		R2	
.22		PREPROC PLOT LOAD & GO		R3	
45	-	STD. PLOT LOAD & GO			

OUTPUT UNITS - These units require equip and release cards as indicated by their codes:

<u>L.U.</u>	DESCRIPTION	CODE
30	GSE TEMELETRY	El,R2
31	CHECKPOINT DUMP TAPE	. E2,R2
5	PREPROC CALCOMP	E3,R3
49	STD. PLOT CALCOMP	E3

WORKING UNITS - These units are generally working units and are put on the drum (no equip cards required); however, they may be controlled differently, as indicated by their codes:

L.U.	DESCRIPTION	CODE
3	PREPROC ASSEMBLY	Rl
15	PREPROC OUTPUT LOAD & GO	S1,R2
4	PREPROC PLOT DUMPS	S2,R3
.40	STD. PLOT DUMPS	S2
41	STD. PLOT WORK AREA	
2	PREPROC WORK AREA	R2
6	PREPROC WORK AREA	R2

An explanation for the various codes listed above is as follows:

R1 - This unit may be released after PREPROC execution.

- R2 This unit may be released after MAIN PROC execution.
- R3 This unit may be released after PREPROC PLOT execution.
- El This unit may be equipped as a save tape or put on the drum if so desired.
- E2 This tape must be equipped as a save tape or a working magnetic tape unit.
- E3 This unit must be equipped as a save tape if this option was requested and density set at LO.
- S1 This unit may be equipped as a save tape if it is desired to use these PREPROC generated routines on a later run. In this case PREPROC loading and execution may be bypassed and only this tape is loaded.
- S2 This unit may be saved if it is desired to replot from these plot tapes at a later date. In this case the PLOT Processor may be run as a separate job with the desired input tapes.

2.3 User Supplied Program Linkage

When a special purpose program is to be loaded at object time, the user must construct the following linkage in his subroutine:

SUBROUTINE ANYNAMEL

COMMON/TIME/SIMTIME(50)

DATA (I = 0)

IF (I.EQ.O) CALL SANDF (I,P,DT,ST)

IF (SIMTIME.LT.ST) GO TO 1

CALL SANDF (I,P,DT,ST)

GO TO 2

1 CALL SCHED (DT, 8H ANYNAME1, P, 1)

END

2

The user's first statements should begin at label 2. This linkage is all that is necessary in order for the routine to be scheduled as any other routine under the *PROGRAMS Preprocessor Option.

2.4 Checkpoint Restart

In order to restart an earlier job, one must use the L. U. 31 output tape from that job as input to the following restart control deck:

6

7₉JOB

70EMAND, 40000B, 7MT

7 EQUIP

[ALL I/O EQUIP CARDS] 710AD,10 7 9RUN. *PROGRAMS 7788 *START 7788 $\frac{7}{9}$ COMPASS, I = 3, X = 15 11 7BANK, (0),LC.,(1),CHKPNTW 9 710AD,35 7 9RUN I 9 (4) = {RESTART NUMBER (See Section 4.2)}

\$

3.0 PREPROCESSOR INPUT

The Preprocessor (PREPROC) is a set of routines which constitute the first of the three processors that comprise the AGS Simulator. Function of the Preprocessor is to construct a set of routines which are executed by the MAIN Processor. From a systems standpoint, the sequence of events is as follows:

- 1) PREPROC is loaded.
- 2) Begin execution of PREPROC.
- 3) Read PREPROC data cards.
- 4) Write out BCD card image of the routines on LUN 3.
- 5) Call in the Assembler, assemble routines, and write load and go on LUN 15.
- 6) Load in MAIN Processor
- 7) Load LUN 15.
- 8) Begin execution of MAIN Processor.

PREPROC generates four types of programs: an input program, a variable number of output programs, a "Timelist" program, and a program containing jumps to subroutines, whose entry points have been defined by PREPROC data cards.

The gross format of all PREPROC data sets is identical. A data set is defined as an * OPTION card plus all data cards pertinent to that option and terminated by a standard SCOPE system end of file card (5 %). The first card of the data set contains an * in column 1 followed by the option name. *PROGRAMS, *OUTPUT, *CALCOMP, *INPUT, *TIMELIST, *START are the only legal first cards. With the exception of the *START option the order of the data sets is immaterial. *START and EOF cards are always last, always needed and serve as the PREPROC data terminator.

Three of the Preprocessor options, *PROGRAMS, *OUTPUT, and *CALCOMP, are interconnected in that the latter two options build programs which are scheduled by the former.

3.1 PROGRAMS Option

Although the program built by use of this option is the most simple, it adds great flexibility to the simulator and therefore is most difficult to explain. By intelligent use of this option the user has essentially unlimited capability to extend, modify or "foul-up" the operation of the simulator. In a sweeping statement any routine may be written, interfaced with any other simulator or system routine through common or call statements, executed during the simulation at a specific time, recalled at a periodic frequency, executed for a set length of time, or operated in a time/priority mode. In production runs this extended capability will probably not be fully utilized. For such runs, "standard" routines, like the standard print, checkpoint, plot dump and termination programs, will be controlled by this option. (See Section 6.1).

1	13	25	37	49
ENTRY POINT	START TIME	STOP TIME	DELTA TIME	PRIORITY

The format for each data card is indicated above. All data cards follow an *PROGRAMS card and are read in fixed format (A8, 4X, 4E12,8). ENTRY POINT is a BCD name (up to 8 characters) of the program to be called and starts in column 1. START TIME is the simulation time the routine is to be entered, and STOP TIME designates the time execution of the routine is to be terminated. DELTA TIME sets the update frequency of the program, and PRIORITY is a number used to reorder the execution of jobs if two or more jobs are scheduled to be executed at the same time. A low number is a high priority, 0 being "Do This Job First".

If it is desired to vary the frequency of execution of any one particular routine during the run, more than one card is required. For this operation the cards (for the particular routine) must be arranged one after the other in <u>increasing</u> start times among the cards following the *PROGRAMS card. An example is given below.

EXAMPLE 1

A special print routine has been defined in the OUTPUT Option called STATEVEC. It is desired that this program be executed every .02 seconds from 100. to 102. seconds and every 5 seconds from 107. seconds until normal termination, which is assumed to be 500. seconds. Two cards for STATEVEC are needed. The first schedules the high frequency print and the second, the low frequency print. NOTE, THAT FOR THIS OPERATION, THE ORDER OF THESE TWO CARDS MUST BE IN INCREASING START TIMES.

*PROGRAMS

CALCOMP	104.	400.	2.	0
STATEVEC	100.	102.	02.	100.
STATEVEC	107.	500.	5.	100.
HIGHFQ	0.	500.	2.	50.
TERMIN	500.			
77				
88.				

3.2 OUTPUT Option

This PREPROC option generates a user controlled number of PRINT programs that are executed in the MAIN Processor. Since Standard print routines are available in the MAIN Processor (See Sections 6.1 & 6.2), the OUTPUT option need be used only when <u>additional</u> parameters are to be printed. The corresponding print programs are scheduled by use of the *PROGRAMS option.

The first data card read is an *OUTPUT card followed by a program name card. The alphanumeric symbol,or name, starts in column 1 and consists of 1 to 8 characters composed of letters, numbers, or special characters (\neq , <, ., v). This symbol may not begin with a numeric character and is also used in the first field of the *PROGRAMS data card which schedules this routine. Each card following the name card defines a variable, format, scale factor and variable name the user wants to print. The variable is defined by giving its location (either decimal or octal) within a common block. When successive variables are within the same common block, the common block name does not have to be updated. Data may begin in any column and must contain no imbedded blanks (except for the BCD variable name). The data card format is shown below.

COMMON BLOCK + OFFSET, BCD NAME, FORMAT, SCALE FACTOR, CONV FACTOR

If the OFFSET is in octal, an O must follow the octal digits. BCD NAME can have as many as 8 characters and can consist of any character except a comma (,). Legal FORMAT identifiers are O for octal, E for 3800 floating point and I for decimal integer. If B is used for the SCALE FACTOR, the data will be converted from an AGS fractional number to 3800 F.P. before printing. (It should be obvious that, when a scale factor is used, the format should be E.) The CONV FACTOR consists of up to 12 numeric characters and is the number by which the variable will be multiplied before output occurs. If the SCALE FACTOR is not to be used, then two commas must separate the CONV FACTOR and the FORMAT. An example of the use of the OUTPUT option is given below.

EXAMPLE 2

*OUTPUT

STATEVEC

MEMORY + 3410, LEM X, E, B23

CFILE + 2, FLAG SW, I

MEMORY + 3410, OCTAL X, O

+ 3420,ATT Y,E,B23,57.296

+ 2370, F00, 0

7788

In the above example an output routine called STATEVEC will print the variables called out and label them with the characters appearing in the BCD name field when the program STATEVEC is executed in the MAIN Processor. However, it should be remembered that STATEVEC must be scheduled under *PROGRAMS.

If it is desired to use different print frequencies for some of the variables, the data cards may be separated into additional blocks under other program names. For instance, if the first two variables in Example 2 are to be printed at a frequency different from the remaining variables, an additional *OUTPUT card and an additional program name card are required, as shown in Example 3.

EXAMPLE 3

*OUTPUT

STATEVEC

MEMORY + 3410, LEM X, E, B23

DFILE + 231, ALT, E,,.00016458

7788

*OUTPUT

STATEVAR

CFILE + 2, FLAG SW, I

MEMORY + 3410, OCTAL X, O

+ 3420, ATT Y, E, B23, 57.296

+ 2370, F00,0

° 7 7 8 8

Time intervals corresponding to the desired frequencies are designated on the STATEVEC and STATEVAR data cards listed under *PROGRAMS.

Should it be desired that during a run the print frequency vary for a particular routine, say STATEVEC, then additional STATEVEC data cards are required under *PROGRAMS. This is exemplified in Example 1 of the previous section.

During execution the variables are printed four across a page and the name of each variable precedes its value. Current simulation time and the routine name (e.g., STATEVEC) are also printed.

3.3 CALCOMP Option

This option generates a routine called CALCOMP which must be scheduled by the user via the *PROGRAMS option. The routine name (CALCOMP) is used on a data card following the *PROGRAMS card. Data cards read by this option are of the same format as those described under the *OUTPUT option except that the name card (second card in the *OUTPUT data set) is deleted. Also, all format options should be E since only floating point data is plotted. Since only one routine (CALCOMP) is constructed by this option, *CALCOMP may appear only once. An example follows:

EXAMPLE 4

*CALCOMP

MEMORY + 550, LEM X, E, B28

+ 560,LEM Y,E,B28

+ 570, LEM Z, E, B28

TIME + 1, TIME,E

DFILE + 185, OMEGA X, E

+ 186, OMEGA Y, E

+ 187, OMEGA Z, E

7788

It should be restated that the routine CALCOMP must be scheduled under *PROGRAMS, as shown in Example 1.

Plotting of variables output by the CALCOMP option is controlled by input cards read by the PREPROC Plot Processor. It should also be mentioned that only 🥌 are available from the common blocks of the MAIN Processor. Also, the same plot frequency must be used for all variables selected by the CALCOMP op-This frequency is designated by the appropriate time intertion. val on the CALCOMP data card following *PROGRAMS. Further, this frequency can be made to change at a specific time during a run by inserting a second CALCOMP data card under *PROGRAMS. In this case the first CALCOMP data card must contain data (Start Time, Stop Time, At) related to the first plot frequency and the second data card similar data related to the second plot frequency; these two cards must be arranged in the order of increasing start times, as indicated in Section 3.1.

It should be pointed out that only are available for any one plot. Therefore, the user must carefully examine the plot capabilities before selecting a plot frequency (or frequencies). If the run is very long, he may want to use two frequencies, one high and the other low. The relationship below can be used to determine the plot frequencies or time period for each plot frequency.

$$\frac{\text{Tl}}{\Delta t_1} + \frac{\text{T2}}{\Delta t_2} \leq 1600$$

where T_1 is the time period for plotting at the frequency related to Δt_1 and T_2 is the period for plotting at the frequency related to Δt_2 . If only one frequency is desired, then the following relationship must be adhered to:

 $\frac{T}{\Delta t} \leq 1600$

where T is the total run time.

3.4 INPUT Option

All of the card input for the MAIN Processor is accomplished by one call to a general Read routine called INDATA. INDATA is a super set of READDATA and contains some special input options developed expressly for the AGS Simulator (See Section 4.1). The PREPROC INPUT option simply extends the number of data arrays that INDATA can read into. If the "standard" input routine is all that is necessary, then this PREPROC option is unnecessary (See Section 4.2). The data cards read by the INPUT option are only for building the extra arguments in the INDATA call. The actual call to INDATA, which reads the simulation data, is done at initial condition time of the MAIN Processor (See Section 4.0).

All extra common block names start in column 1 and require one card each. The total number of arguments in the call cannot exceed 77, octal. The following example indicates how the INPUT option is used:

EXAMPLE 5

It is assumed that the "standard" input program contains four arrays (here, common block and array are synonomous) named FLAGBUF, MEMORY, DFILE, and CFILE. The input program executed in the MAIN Processor will be equivalent to the FORTRAN statement,

CALL INDATA (FLAGBUF, MEMORY, DFILE, CFILE)

If a user wishes to also read into another common block called MYDATA, three PROPROC data cards for this option are necessary. These cards follow the *INPUT card, as shown below.

*INPUT

MYDATA

7788

The equivalent FORTRAN statement is now

CALL INDATA (FLAGBUF, MEMORY, DFILE, CFILE, MYDATA) where MYDATA is block number 5.

It is important to note that the INPUT option is not scheduled under *PROGRAMS.

3.5 TIMELIST Option

This PREPROC option allows the user to build a program to set data into any common location at a specified time. Types of data are 3800 floating point, decimal integer, octal, or AGS type with scale factor conversion.

The first data field describes the common block name and either an octal or decimal offset. In the second data field is the time (real simulation time) at which the data is to be entered. The last field contains the data, as follows:

3800 Floating Point - up to 12 numeric characters; decimal point required

Decimal Integer - no decimal point

Octal - octal characters followed by O

AGS Data - floating point number followed by B and integer scale factor

EXAMPLE 6

*TIMELIST

MEMORY + 4770,600.2,57.5B10

DFILE + 99,32.5,10

- + 452,900.2,7760
- + 388,10.5,599.

77 88

When using the scale factor option, the number to be scaled <u>must</u> have a decimal point, e.g., 57B10 must be written as 57.B10.

As in the case of the INPUT option, use of the TIMELIST option does not require scheduling under *PROGRAMS.

4.0 AGS MAIN PROCESSOR INPUT

The AGS MAIN Processor is a set of routines which simulate the AGS computer and its environment under executive control. MAIN Processor data input is the flight program tape and card input.

At the beginning of execution of the MAIN Processor an initialization subroutine, which first reads in the flight program memory tape and then makes a call to the INDATA input routine, is called.INDATA is a modified form of the generalized input routine READDATA. The use of this routine and the AGS modifications made to it are described in Section 4.1. A complete description of READDATA, along with documentation of several special features, may be found in the Appendix.

A standard calling sequence has been assembled in the initialization call to INDATA (See Section 4.2.1) but, as noted in PREPROC documentation, the INPUT option may be used to add arguments (common blocks) to this call. The MAIN Processor data cards will be used to insert data to these common blocks in order to initialize the simulator.

4.1 The INDATA Routine

The INDATA routine is used in the MAIN Processor of the AGS simulator to read a set of data cards to initialize the simulator and the flight program. This set of data cards is terminated by reading of a dollar sign (11 - 3 - 8 punch). Data fields on these cards begin in column 1 and are usually terminated by reading the last column (column 72) or by encountering a slash (0 - 1 punch). All characters after the slash may be used as comments. A data field usually assumes the following form (although other forms may be used as described in the Appendix):

MC(S) = N1, N2, N3, ... / COMMENT

where M specifies the mode of the data. Modes used in the AGS simulator are

0 OCTAL

I INTEGER

E or F FLOATING POINT (REAL)

C is an integer (Block Number) indicating into which variable (Block Name) in the argument list that data is to be entered (See Section 4.2); if additional arguments are added by use of *INPUT, their corresponding values will begin with the number after the last one in the standard list and follow in the order of the cards following the *INPUT card.

S is a positive non zero linear subscript indicating the element of the array associated with it; an O following an element number will flag the displacement as octal rather than decimal.

N1, N2, ... is the numeric field, used in the AGS simulator as described in the next several paragraphs.

DECIMAL FIELDS (I, E, or F)

A decimal field has the following components, the first of which is mandatory:

<u>Principal Part</u> - a decimal number with or without a decimal point. The decimal point, if any, may appear at the beginning of, end of, or within the principal part. If omitted, it is assumed to be located at the right-hand end of the principal part. Omitted for mode I.

<u>Decimal Scale Factor</u> - (optional) consists of the letter E or D followed by a signed or unsigned decimal integer. The value preceding E or D will be multiplied by 10 to this power. The decimal scale factor must follow the principal part. (NOTE: D and E are completely interchangeable in this case). Restricted to mode E or F.

<u>Conversion Factor</u> - (optional) consists of the letter M separating two decimal numbers in a field. The product of the two values will be stored as one element. Restricted to mode E or F.

Binary Scale Factor - (optional) consists of the character B followed by a signed or unsigned decimal integer. The number following B represents the power of 2 which, when 2 to this power is divided into the decimal value preceding the B, will produce an 18 bit fixed point number of AEA specifications. Negative values are represented as two's complement. Restricted to mode E or F.

EXAMPLE 7

E7 (85) = 1188.3, 1E3, -.987D-4 /VX, VY, VZ

F6 (185) = 1.0 /FAST CONTROL

F4 (51) = 2.76 M57.2957 /PITCH DEGREES

F2(3070) = 3.0B2, -.5DB2, .25B-1, -.25B-1

E2(230) = 5.23E5B23

E2(270) = 3.9874B4M2.54B17

OCTAL FIELDS (I or 0)

An octal field may be input in either of the following manners for the AGS simulator:

<u>Integer Mode</u> - consists of a string of not more than 16 octal digits (0-7), with or without a sign, followed by the letter 0 or K. A positive decimal integer N placed after the 0 or K will cause N zeros to be appended to the right of a positive octal number. The effect of a minus sign preceding the number is to "one's complement" the entire word after zeros are appended. (Note: 0 and K are completely interchangeable in this case).

Octal Mode - operates as described above except the O or K need not be used after the number. Obviously, all zeros must be appended to the octal number as input.

EXAMPLE 8

I 11 (6) = 357013, 176K13 /BITWORDS 0 11 (1) = 1042, 377, 1143, 3000 /EXEMPT

4.2 Initialization Blocks

The following common blocks have been assembled in the standard initialization call to INDATA:

BLOCK NUMBER BLOCK NAME 1 FLAGBUF 2 MEMORY 34 BLK1 VEH1 56 VEH3 CONT 78 UNIVR TARGT 9 TIME 10 NOERROR 11 DEDABUF 12 SWCOM

The sets of maps on the next several pages describe the MAIN Processor input to these blocks for a nominal simulator run.

000	*****	* * * **** * * *	* * * * * * * * * * * * * * * * * * * *			
00	INSTRUCTION TRACE CONTROL					
00000	*****	* * * * * * * * * *	* * * * * * * * * * * * * * * * * * *			
000	* TRACE CONTR	OL CELLS *				
0	ELL	BLOCK	MNEMONIC			
0	1	FLAGBUF	TON			
000	TO 10					
00	11	FLAGBUF	TOFF			
00	TO	1	•			
C	20	FLAGBUF	LOC1			
C	10	1				
000	30					
00		FLAGBUF 1	LOC2			
C	то 40					
000						
000		BLE DESCRIPTION -				
C		BLE DESCRIPTION -	1			
00000	THE BLOC	K IS DIVIDED INTO	FOR EACH TRACE REQUEST. FOUR ARRAYS OF TEN WORDS. THE CORRESPONDING YS CONTROL THE TEN POSSIBLE TRACE REQUESTS.			
C	TON	BEGINNING TIMES	FOR TRACE. FLOATING POINT SECONDS.			
000		ENDING TIMES FOR	TRACE.			
000	LOC1	BEGINNING LOCATI	ON FOR TRACE. OCTAL AEA ADDRESS			
000		ENDING LOCATIONS	FOR TRACE.			
C	* * * * * *		* * * * * * * * * * * * * * * * * * * *			
0		ASTRONAUT I				
č		* * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *			
	•		19			

*

C

C

c- c*	ASTRONAUT	INITIAL 12	ATION CELL	 s *	
CE		BLOCK		MNEMONIC	-
c	1	BLK1		TIME	•
C C	TO	3			
C	75			•	
CCC	101	BLK1 3		CODE	+
CCC	T0 175				
C	201	BLK1		DATA1	
C C	TO	3			
C	275	** **************	an an ann a an an an		
000	301	BLK1 3		DATA2	2
	T0 375			•	
C		•			9
c-					
C-	ASTRONAUT	ARIABLE DE	SCRIPTION	-	
C			· · · · ·		
c c	NOTE -	CV TS DIVI	DED THITO	COLID ACDAN	S OF 100 WORDS+OF WHICH THE
C C	USER MAY	ACCESS 75	. AN ASTR	ONAUT FUNC	TION IS REQUESTED BY SETTING
CCC	TIME	TIME IN	FLOATING I	POINT SECO	NDS FOR THIS FUNCTION.
CCC	CODE	INTEGER	CODE FOR I	REQUESTED	FUNCTION. (SEE LIST BELOW)
CCC	DATA1	OCTAL AL	DRESS FOR	USE WITH	CODES 1 AND 2. (SEE BELOW)
00000	DATA2	FLOATING	POINT DAT	A WORD FOR	REQUESTED FUNCTION. (SEE BELOW)
	FUNCTION	CODE	DATA	ι.	DATA2
c c	DEDA INPUT	1	ADDRI	ESS	DATA
000000					ADJUST DECIMAL POINT TO PLACE THE FIVE DIGITS THAT ARE TO BE ENTERED INTO THE DEDA IMMEDIATELY TO THE LEFT OF THE DECIMAL POINT.
0000	DEDA CUTPUI	2	ADDRI	ESS	TIME DURATION OF DISPLAY IN SECONDS. NO ENTRY (ZERO) WILL RESULT IN A 40 MS DURATION.
с					

C

GUIDANCE C 0. - AGS . 3 C CONTROL SWITCH 1. - PGNS C 0. - OFF C MODE CONTROL 4 SWITCH C 1. - AUTOMATIC С 2. - ATTITUDE HOLD C C ABORT STAGE 5 0. - RESET BUTTON С 1. - ABORT STAGE C ABORT BUTTON 6 C 0. - RESET 1. - ABORT C ¢ C DOWNLINK UPDATE 7 and our and age for per take C NOTE -ALLOW A MINIMUM OF 6 SEC. AFTER A DOWNLINK BEFORE ANOTHER UPDATE. C C AND 4 SEC. BEFORE ANY OTHER ASTRO FUNCTION. C C С LM UPDATE VIA 8 C DEDA C C NOTE -ALLON A MINIMUM OF 18 SEC. AFTER AN UPDATE BEFORE SCHEDULING С C ANOTHER ASTRO FUNCTION. C C_ 9 C CSM UPDATE VIA -----C DEDA C C NOTE -ALLOW A MINIMUM OF 18 SEC. AFTER AN UPDATE BEFORE SCHEDULING C C ANOTHER ASTRO FUNCTION. С С C ULLAGE 10 C С AXIS BY AXIS C RCS THRUSTING 11 0. - ALL 3 AXES - 1. - X AXIS ONLY 2. - Y AXIS ONLY С C C 3. - Z AXIS ONLY C C INACTIVE 12 C C TPI SEARCH • NOMINAL TIME OF .NOMINAL VALUE OF THLOS ULLAGE IN FLT. PT. FLT. PT. DEGREES. 13 ¢ C SECONDS C С C RENDEZVOUS 14 0. - MAKE 5 MARKS C RADAR X. - MAKE X MARKS С ¢ ENGINE ON/OFF 15 0. - ENGINE OFF С 1. - ENGINE ON ·C C DESCENT ENGINE 16 . O. - NOT ARMED ARM C 1. - ARMED

	and a second second second		
ASCENT EN	NGINE 17 -		0 NOT ARMED
ARM			1 ARMED
			¢
DESCENT E	ENGINE 18		PERCENT OF THROTTLE
	The state and a second		DESIRED.
			(0. TO 100.)
BANDWIDTH	SWTTCH 19		0 MAX.
			1 MIN.
JET SELEC	CT 20		0 - 0 1575
SWITCH	~1 ~20		0 2 JETS 1 4 JETS
5			4. 4.0013
* * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * * * * * * * *
			an de la semila de la companya de la
	ENVIRON	MENTS INITIALIZATI	ON
		·····	······································
* * * * *	the second se	* * * * * * * * * 4UST BE INITIA	**************************************
	IN. IN SUCH		
OFF .	AN AN SUCH	NUN THE MAI	IN LINGTHE IS ASSUMED
	VIRONMENTS INPL	IT VALUES ARE ELOA	TING POINT UNLESS OTHERWISE S
	A THOMAN THE THE CALL	THEOLO MIL PLUM	TAND I VANI UNELUS VINENNISC S
<u></u> LM INITIA	LIZATION CELLS	*	
		* MNEMONIC	<u></u>
L .	BLOCK	MNEMONIC	
L .	BLOCK VEH1		
L 06	BLOCK VEH1 4	MNEMONIC	
L 06	BLOCK VEH1 4 VEH3	MNEMONIC	
L 06	BLOCK VEH1 4	MNEMONIC	
L 06 09	BLOCK VEH1 4 VEH3 5	MNEMONIC STAGE ENGARM	
L 06 09	BLOCK VEH1 4 VEH3 5 VEH1	MNEMONIC	
L 06 09 54	BLOCK VEH1 4 VEH3 5 VEH1 4	MNEMONIC STAGE ENGARM - WV(1)	
L 06 09 54	BLOCK VEH1 4 VEH3 5 VEH1	MNEMONIC STAGE ENGARM	
L 06 09 54	BLOCK VEH1 4 VEH3 5 VEH1 4	MNEMONIC STAGE ENGARM - WV(1)	
L 06 09 54 55	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4	MNEMONIC STAGE ENGARM WV(1) WV(2)	
L 06 09 54 55	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1	MNEMONIC STAGE ENGARM - WV(1)	
L 06 09 54 55	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4	MNEMONIC STAGE ENGARM WV(1) WV(2)	
L 06 09 54 55 56	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1 4 VEH1 4	MNEMONIC STAGE ENGARM WV(1) WV(2) WV(3)	
L 06 09 54 55 56	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1	MNEMONIC STAGE ENGARM WV(1) WV(2)	
L 06 09 54 55 56 76	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1 4 VEH1 4 VEH3 5	MNEMONIC STAGE ENGARM WV(1) WV(2) WV(3) DFUELL	
L 06 09 54 55 56 76	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1 4 VEH3 5 VEH3	MNEMONIC STAGE ENGARM WV(1) WV(2) WV(3)	
LM INITIA L 06 09 54 55 56 76 17	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1 4 VEH1 4 VEH3 5	MNEMONIC STAGE ENGARM WV(1) WV(2) WV(3) DFUELL	
L 06 09 54 55 56 76 17	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1 4 VEH3 5 VEH3 5 VEH3 5	MNEMONIC STAGE ENGARM WV(1) WV(2) WV(3) DFUELL AFUELL	
L 06 09 54 55 56 76	ALIZATION CELLS BLOCK VEH1 4 VEH3 5 VEH1 4 VEH1 4 VEH1 4 VEH3 5 VEH3	MNEMONIC STAGE ENGARM WV(1) WV(2) WV(3) DFUELL	

	TON 2	E -	······································			a and the second se	1
	C		ER IS INITIALIZ	ED EY SP	ECIFYING E	ITHER TSI	*
	954	VEH	L	ERY *			
(}					······································	-
0	955	VEH		-ERZ			
0	956	VEH	1 EU	ERX			
(:	4					
(957			((1)		an an an tha an ann an a	• •
	C TO		т		1997 - 1997 -		
(TS	(9)	***		- /
0	NOT		ITUDE IS ESTABLE	SHED BY	INTTIALIZIN	3 P.Y.R.	
-0		RELATIVE TO	LOCAL VERTICAL THE STABLE ME	OR BY	INITIALIZI	NG THE ATTITUDE	
-0			والمساد ومحدو ويتراجع والمراجع		*		
(51	VEH		ICH U	R IVS AR	· · · · · · · · · · · · · · · · · · ·	
0		. 4	· · · · · · · · · · · · · · · · · · ·		•	e	
0	592	° VEH		4	U		
0	288	VEH	1 ROI	.L			
0		4					
C	951	VEH 4			- ¹		
C	050	······································					••••
c	952	VEH 4	1 GAN	1	· · · · · ·		
C	953	VEH	1 GAG).	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
- C		4					
C	966	VEH . 4		(1)	······		
C	T0 974		Т	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · ·			the second s			
000		. 4		ERR			
C	56	VEH 4		тст			
C	204	VEH 5	3 DTF	RIN		9	
C							
0							
000		VARIABLE DES	CRIPTIONS -			· · · · · · · · · · · · · · · · · · ·	
c	S	TAGE 0. =	ASCENT	1. = DES	CENT		، به نف
- 77						and the second of the late	

cc	2. = CSM ATTACHED
C C C	ENGARM 0. = OFF 1. = ON
00000	PITCH, YAW, ROLL ARE SUCCESSIVE ROTATIONS ABOUT VEHICLE Y, Z, X AXES (X, Y, Z RIGHT HANDED SYSTEM) RELATIVE TO INITIAL ORIENTATION OF VEHICLE ALONG LOCAL VERTICAL I.E. XBODY =YBODY X ZBODY
0,0000	YBODY = V X R ZBODY ALONG -POSITION VECTOR TO SPACECRAFT FROM MAJOR GRAV- ITATING BODY UNITS DEGREES
00000	WV(1) (2), (3) ARE ANGULAR RATES OF VEHICLE AROUND XBODY, YBODY , ZBODY UNITS DEGREES/SECOND
0000	DFUELL INITIAL FRACTION (0. TO 1.) OF DESCENT FUEL LOAD
00000	AFUELL INITIAL FRACTION (0. TO 1.) OF ASCENT FUEL LOAD
0000	FASTSW 0. = SLOW CONTROL 1. = FAST CONTROL
C n c	GAI, GAM, GAO ARE INNER, MIDDLE AND OUTER GIMBAL ANGLES INPUT UNITS DEGREES
00000	EULERY,Z,X ARE EULER ANGLE ROTATIONS OF THE STABLE MEMBER RELATIVE TO REFERENCE INERTIAL INPUT UNITS DEGREES
C C C C C	TSI IS TRANSFORMATION MATRIX FROM REFERENCE INERTIAL TO STABLE MEMBER COORDINATES
0000	TVS IS TRANS. MATRIX FROM STABLE MEMBER TO BODY COORDINATES
с с с с с с	ASAERR IS FLAG INDICATING THAT ERRORS ARE TO BE INCLUDED IN ACCFLEROMETER AND GYRO MODELS. ON = 1. PRNTCT LM CONTROLLED PRINT SWITCH. OPTIONS ARE THOSE LIST- ED IN LM DOCUMENT. DTPRIN CONTROLS DELTA T BETWEEN LM PRINTS = 0. PRINT EVERY INTEGRATION (WITH PROPER PRNTCT
00000	SETTING) UNITS - SECONDS
	ADDITIONAL CELLS WHICH MAY BE INITIALIZED 13 VEH1 ASAERR FLAG SET TO 1. WHEN GYRO 4 AND ACC. BIASES ARE DESIRED
	24

C	257	VEH1 4	KCSBIT(1), 2+3+4	THESE 4 CELLS CONTROL 4
C	478	VEH1.	THEITS	SEE MANUAL
C		VEH1 4	BJPY	Y NOZZLE TRIM ANGLE(DES- CENT) IN DEGREES INIT.
C	639	VEH1	BJPZ	Z NOZZLE TRIM
000		VEH3 5	AEBITS	SEE LM MANUAL
CC		VEH3 5	DEBITS	SEE LM MANUAL
c		VEH3 5	DEBUG	SEE LM MANUAL
° C	335	VEH1 4	SLOSH	SET TO 1. FOR SLOSH DURING THRUSTING
CC			····· · · · · · · · · · · · · · · ·	DORINO THROSTING
C				
cc	and the second sec	ITIALIZATION CELLS	*	
C		ELOCK	MNEMONIC	
CCC				
C	0	UNIVR 7	ЕРОСН	8
0000000	57	UNIVR 7	ORIGIN	
č	80 .	UNIVR	R(X)	
cc		7		
C		UNIVR 7	R(Y)	
C C	82		R(Z)	
000	0.	7		
C	85	UNIVR	V(X)	
000	86	UNIVR	V(Y) -	
000	80	7		
000000000000000000000000000000000000000	87	UNIVR ·	V(Z)	•
CC		1		•
CCC	91	UNIVR 7	PRNTSW	
c				
C C	106	UNIVR 7	PERT	
c	172	UNIVR	YEAR	
C C	and a strength of the strength			•
-				And the second sec

č			
C LIN	TVEDSE	VADTAD	C DECEDIDITANE *
C	LYLKSE.	VARIAD	LE_DESCRIPTIONS *
C			
C .	EPOCH		TIME MEASURED IN DAYS FROM MIDNIGHT BEFORE
č			JULY 1 (GREENWICH TIME) TO SIMULATOR TIME=0.
C			
č	YEAR	SPECIF	IES EPHEMERIS DATA PERIOD STARTING JULY 1.
C			AR = 1968. 1968-1969 YEAR = 1969.
C C	ORIGIN	···· ···	ORIGIN OF REFERENCE INERTIAL COORDINATE SYSTEM
č			1. = CENTER OF EARTH
C			2. = CENTER OF MOON ORIGIN SHOULD CORRESPOND TO PRINCIPAL GRAVITATING
č	-		BODY (EARTH OR MOON)
c			· · · · · · · · · · · · · · · · · · ·
c	R		R(X),R(Y),R(Z) VEHICLE POSITION IN REFERENCE INER-
C			TIAL COORDINATES RELATIVE TO SPECIFIED ORIGIN.
C C	INPUT	UNITS	- FEET
č	-		
C	V		V(X), V(Y), V(Z) VEHICLE VELOCITY IN SAME COORDINATES
C ·	INPUT	UNITS	AS ABOVE - FEET/SECOND
Ċ.	•	•	
C.	PRNTSW		0. = VIRTUALLY NO UNIVES CONTROLLED PRINT (EXCEPT INITIALLY)
č	1		1. = TIME AND STATE VECTOR (IN METRIC UNITS)
C	, . 		EACH TRAJECTORY INTEGRATION CALL . WHICH NORM-
C C			ALLY OCCURS AT LEAST EVERY 2 SECONDS. 2. = SAME AS 1. PLUS PRINTING OF TIME AND MODE
C	•		AT EACH UNIVES CALL.
C C	PERT		D. = SPHERICAL GRAVITY MODELS FOR TRAJECTORY INTEG-
č	1		RATION.
C			NONZERO (USUALLY SET TO 1.) = PERTURBATIONS TO G-
C C.			FIELD DUE TO SUN AND OTHER (NON-ORIGIN) BODY AND ALSO NONSPHERICAL FIELD OF PRINCIPAL BODY.
c			
C C		4.	
с с с с с с с			
C			
c •			
C TAL	DOCT IN		
C* TAP	NOCI INI	LITALIZ	ATION CELLS *
C	•.		
C CELL		BLOC	CK MNEMONIC
		BLUC	PRACTICIALC
C 58		TARG	T RT(X)
C		8	
	• •		• 26

.

•

-

12.1424 2414 1.052

TRUE TO THE PARTY OF

59	TARGT	RT(Y)			
	8	en an th			
60	TADGT	RT(Z)	and the second		
60 TARGT 8		RF(Z)			
96	96 TARGT		VT (X) VT (Y)		
8 97 TARGT 8					
		VT(Y)			
		n ann a Aire an Aire ann an Aire an Aire ann an Air			
98 TARGT		VT(Z)	VT (Z)		
	. 8	· · · · ·			
	· · · · · · · · · · · · · · · · · · ·	 a) (1) - a (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	······································		
21	TARGT	DTPRNT			
	8				
	the second s				
	• •				
TARGET	VARIABLE DESCRIPT	ION -			
	and the second				
OTP	DHT TIME INT	FRUM OCTUCEN	TATE VECTOD DRINT		
			AL BETWEEN STATE VECTOR PRINT		
		ECOND			
	UNITS SI	ECOND			
•	UNITS SI		POSITION VECTOR (SAME ORIGIN		
RT	UNITS SI TARGET (P) AS UNIVR	ASSIVE) VEHICLE	POSITION VECTOR (SAME ORIGIN		
•	UNITS SI TARGET (P) AS UNIVR	ASSIVE) VEHICLE	POSITION VECTOR (SAME ORIGIN		
RT	UNITS SI TARGET (P) AS UNIVR	ASSIVE) VEHICLE	POSITION VECTOR (SAME ORIGIN		
RT INP	UNITS SI TARGET(P) AS UNIVR UT UNITS - FEET	ASSIVE) VEHICLE S)	-		
RT INP	UNITS SI TARGET(P) AS UNIVR UT UNITS - FEET	ASSIVE) VEHICLE S) EHICLE VELOCIT	POSITION VECTOR (SAME ORIGIN Y (SAME COORDINATES AS RT)		
RT INP	UNITS SI TARGET(P) AS UNIVR UT UNITS - FEET TARGET VI	ASSIVE) VEHICLE S) EHICLE VELOCIT	-		
RT INP	UNITS SI TARGET(P) AS UNIVR UT UNITS - FEET TARGET VI	ASSIVE) VEHICLE S) EHICLE VELOCIT	-		
RT INP	UNITS SI TARGET(P) AS UNIVR UT UNITS - FEET TARGET VI	ASSIVE) VEHICLE S) EHICLE VELOCIT	-		
RT INP	UNITS SI TARGET(P) AS UNIVR UT UNITS - FEET TARGET VI	ASSIVE) VEHICLE S) EHICLE VELOCIT	-		
RT INP VT INP	UNITS SI TARGET(P AS UNIVR UT UNITS - FEET UT UNITS - FEET VI UT UNITS - FEET/SE	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND	-		
RT INP VT INP	UNITS SI TARGET(P) AS UNIVR UT UNITS - FEET TARGET VI	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND	-		
RT INP VT INP	UNITS SI TARGET (P AS UNIVR UT UNITS - FEET UT UNITS - FEET/SI UT UNITS - FEET/SI TRONAUT SWITCH INI	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION *	-		
RT INP VT INP LEM/AS	UNITS SI TARGET (P AS UNIVR UT UNITS - FEET UT UNITS - FEET/SE TARGET VI UT UNITS - FEET/SE TRONAUT SWITCH INI BLOCK	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC	Y (SAME COORDINATES AS RT)		
RT INP VT INP	UNITS SI TARGET (P AS UNIVR UT UNITS - FEET UT UNITS - FEET/SE TARGET VI UT UNITS - FEET/SE TRONAUT SWITCH INI BLOCK SWCOM	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION *	Y (SAME COORDINATES AS RT)		
RT INP VT INP LEM/AS	UNITS SI TARGET (P AS UNIVR UT UNITS - FEET UT UNITS - FEET TARGET VI UT UNITS - FEET/SI TRONAUT SWITCH INI BLOCK SWCOM 12	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(11)	Y (SAME COORDINATES AS RT) ABORT BUTTON 1.=SET 0.=RESET		
RT INP VT INP LEM/AS	UNITS SI TARGET (P AS UNIVR UT UNITS - FEET UT UNITS - FEET/SE TARGET VI UT UNITS - FEET/SE TRONAUT SWITCH INI BLOCK SWCOM	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC	Y (SAME COORDINATES AS RT) ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON		
RT INP VT INP LEM/AS	UNITS SI TARGET (PA AS UNIVR UT UNITS - FEET UT UNITS - FEET UT UNITS - FEET/SE TRONAUT SWITCH INI BLOCK SWCOM 12 SWCOM 12 SWCOM	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(11)	ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET BALANCE COUPLE SWITCH		
RT INP VT INP LEM/AS	UNITS SI TARGET (PA AS UNIVR UT UNITS - FEET UT UNITS - FEET TARGET VI UT UNITS - FEET/SE TRONAUT SWITCH INI BLOCK SWCOM 12 SWCOM 12	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(12)	ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET BALANCE COUPLE SWITCH 0.=JETS 1,5,9,13 DISABLED		
RT INP VT INP LEM/AS	UNITS SI TARGET (PA AS UNIVR UT UNITS - FEET UT UNITS - FEET TARGET VI UT UNITS - FEET/SE TRONAUT SWITCH INI BLOCK SWCOM 12 SWCOM 12 SWCOM 12 SWCOM 12	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(12) SW(13)	ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET BALANCE COUPLE SWITCH 0.=JETS 1.5.9.13 DISABLED 1.=JETS 1.5.9.13 ENABLED		
RT INP VT INP LEM/AS	UNITS SI TARGET (PA AS UNIVR UT UNITS - FEET UT UNITS - FEET TARGET VI UT UNITS - FEET/SI TRONAUT SWITCH INI BLOCK SWCOM 12 SWCOM 12 SWCOM 12 SWCOM	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(12)	ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET BALANCE COUPLE SWITCH 0.=JETS 1.5.9.13 DISABLED 1.=JETS 1.5.9.13 ENABLED GUIDANCE CONTROL SWITCH		
RT INP VT INP LEM/AS	UNITS SI TARGET (PA AS UNIVR UT UNITS - FEET UT UNITS - FEET TARGET VI UT UNITS - FEET/SI TRONAUT SWITCH INI BLOCK SWCOM 12 SWCOM 12 SWCOM 12 SWCOM 12	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(11) SW(12) SW(13) SW(1)	ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET BALANCE COUPLE SWITCH 0.=JETS 1.5.9.13 DISABLED 1.=JETS 1.5.9.13 ENABLED GUIDANCE CONTROL SWITCH 0.= AGS 1.= LGC		
RT INP VT INP LEM/AS LL 11 12 13 1 2	UNITS SI TARGET (PA AS UNIVR UT UNITS - FEET UT UNITS - FEET TARGET VI UT UNITS - FEET/SI TRONAUT SWITCH INI BLOCK SWCOM 12 SWCOM 12 SWCOM 12 SWCOM	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(12) SW(13)	ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET BALANCE COUPLE SWITCH 0.=JETS 1.5.9.13 DISABLED 1.=JETS 1.5.9.13 ENABLED GUIDANCE CONTROL SWITCH		
RT INP VT INP LEM/AS LL 11 12 13 1	UNITS SI TARGET (PA AS UNIVR UT UNITS - FEET UT UNITS - FEET UT UNITS - FEET/SE TRONAUT SWITCH INI BLOCK SWCOM 12 SWCOM 12 SWCOM 12 SWCOM 12 SWCOM 12 SWCOM	ASSIVE) VEHICLE S) EHICLE VELOCIT ECOND TIALIZATION * MNEMONIC SW(11) SW(12) SW(13) SW(1)	ABORT BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET ABORT STAGE BUTTON 1.=SET 0.=RESET BALANCE COUPLE SWITCH 0.=JETS 1.5.9.13 DISABLED 1.=JETS 1.5.9.13 ENABLED GUIDANCE CONTROL SWITCH 0.= AGS 1.= LGC MODE CONTROL SWITCH		

C		SWCOM	SW(4)	D.E. ARM
C		12		1.=ARMED 0.=NOT ARMED
C		SWCOM	SW(5)	REE ARM
C C	6	12 SWCOM	SW(6)	1.= ARMED 0.=NOT ARMED
c		12	50101	D.B. SWITCH(SLOW MODEL) 0.=WIDE 1.=NARROW
č		SWCOM	SW(7)	214 JET X TRANS+SWITCH
č		12	51.077	C.= 2 dET 1.= 4 dET
č	8	SWCOM	SW(8)	ACA OUT-OF-OLIENT
C		12	- 7	0.= 1N-DETENT 1.=OUT-OF-DETENT
C	9	. SWCOM	SW(9)	MANUAL START
CC		12		1.=SET 0.=RESET
		SWCOM	SW(10)	MANUAL STOP
C	·	1.2		1.=SET 0.=RESET
C				
C				and the second
C	* * * *	* * * * * * *	* * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
C		EVECUT	IVE INITIALIZATION	
č		EALCUI		
c	* * * *	* * * * * * * *	* * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
č				
C		·		
č				•
C	* EXECUTI	VE INITIALIZATIO	ON CELLS *	
C				
C	ELL	BLOCK	MNEMONIC	
_C	i	алан таласын таларын таларын таларын талары талары таларын таларын таларын таларын таларын таларын таларын тала		
C	1 ·	TIME	TIME.	
C		• 9		
C	*			
v	4	*7.11-		
cc	4	TIME 9	. RS	
c				
č	5 .	TIME	TIMEFLG	
c		. 9		•
C				
C		1 / 1		
C	13	TIME	IOPEN	•
C		9		
Ç				
C				
C	EVECUT	UP HASTAS - SHOP		
C.	- EXECUTI	VE VARIABLE DESC	RIPTION -	
C	TIME	CTAUL ATON T	NITTE TIME T. C.	ONTING BOTHT SECONDS
C C	THE			OATING POINT SECONDS.
č				
č	RS	FOR USE WIT	H CHECKPOINT PEST	ARTS. SET TO INTEGER NUMBER
С			INT TO BE RESTARTE	
c				
C				
С	TIMEFL	G ICS TIME CH	ECK FLAG. CHECKS	TO SEE IF TOTAL TIME OF
С		EXECUTION C	OF A MINOR CYCLE I	S LESS THAN OR EQUAL TO
C				CHECK, ZERO (OR NO ENTRY)
0000		FOR NO CHEC	:К•	
<u>_</u> C		· · · · · · · · · · · · · · · · · · ·		
C	1. T			

0000	IOPEN .	OPEN LOOP RUN. 1	NTEGER, 1 IF OPEN LOOP 0 FOR NORMAL (
c	* * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * * *
ċ		EXEMPTING AE	A LOCATIONS FROM ERROR	R MESSAGES
00000	* * * * * *	* * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *
C*	EXEMPT INI	TIALIZATION CELLS	*	
CE	:LL	BLOCK	MNEMONIC	
cc	1 °	NOERROR 10	OBLOCK	
c	200			
000	• EXEMPT VAR	IABLE DESCRIPTION		
0000	OBLOCK		INS THE OCTAL AEA ADDE	
cc	* * * * * *	* * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
c			TE WORD INITIALIZATION	· · · · · · · · · · · · · · · · · · ·
c c	* * * * * *			* * * * * * * * * * * * *
c c-				
C C*	BITWORD TN	ITIALIZATION CELLS	*	
С		BLOCK	MNEMONIC	
C		DEDABUE	BITWORD1	
CCC	0	11	BITHURUI	·····
C C C	7	DEDABUF 11	BITWORD2	
c c				
C	alTworp or			
c-c-c		SCRIPTION -	an a	, , , , , , , , , , , , , , , , , , ,
0000	NOTE - THE BIT THE WOR	WORDS WILL BE INIT D MUST BE INPUT IN	IALLY IN OFF STATES IF A LEFT JUSTIFIED OCTA	THERE IS NO INPUT. L 3800 WORD FORMAT.
C	DIS BIT N	0. 3800 BIT NO.	DIS WD1	DIS WD2
000	1 2	46 45	DOWNLINK TEL STOP OUTPUT TEL STOP	GSE DISCRETE 1 GSE DISCRETE 2

3 C 44 FOLLOW UP GSE DISCRETE 3 4 C. 43 AUTOMATIC DEDA CLEAR 5 DESCENT ENG ON C 42 DEDA HOLD 6 41 ASCENT ENG'ON DEDA ENTER. C 7 ABORT C 40 DEDA READOUT ABORT STAGE . C 8 39 C . C THESE WORDS USE INVERSE LOGIC - A 1 IN A BIT POSITION DENOTES OFF. C C Ċ BITWORD1 INPUT DISCRETE WORD1 INITIAL SET VALUE = 3770000000000000 C C BITWORD2 INPUT DISCRETE WORD2 INITIAL SET VALUE = 3760000000000000 C C C C C ADDITIONAL COMMON BLOCKS WHICH MAY NEED TO BE INITIALIZED C THESE BLOCKS ARE NOT IN THE STANDARD CALL TO INDATA AND C MUST APPEAR IN AN *INPUT REGUEST ¢ C C C-C C* TO START EXECUTION, IN THE AGS, AT SOME POSITION OTHER THAN 4050 * C CELL BLOCK MNEMONIC C C REGCOM PREG 6 C C C C NOTE - . THE NUMBER INTERED INTO PREG SHOULD BE THE OCTAL ADDRESS OF SOME C INSTRUCTION IN THE AGS FLIGHT PROGRAM WHERE EXECUTION IS TO BEGIN C C C C C * DEBUGING AID * C TO GET THE NAME AND TIME OF EACH ROUTINE CALLED BY THE EXECUTIVE PROGRAM C С CELL BLOCK MNEMONIC C . C NOPTJOB NOPTSW 1 C С ¢ NOTE-C C THE SWITCH IS INITALLY SET OFF (SET TO D) С TO GET THE PRINT INTER A. 1 C--

. 5.0 PLOT PROCESSOR

The AGS plot package has been designed as a third processor for the AGS simulator and operates in conjunction with the Preprocessor (PREPROC) and MAIN Processor. The PLOT Processor consists of two separate CALCOMP plot routines. Either of these two plot routines (PREPROC or STANDARD) may be run as a separate job if the dump tapes from a previous simulator run are used as input.

5.1 PREPROC Plot Input

The PREPROC plot routine works in conjunction with the CALCOMP option, described in Section 3.3. Object of this routine is to allow the user a completely flexible plot output function. If this output is desired, a & LOAD, 22 and & RUN card, followed by the data sets described below, is necessary.

A Plot Data Set is defined as the total set of data cards necessary to produce one CALCOMP graph. The graph may have up to three variables plotted against one independent variable. There are two types of data cards within a data set. One card, called the Header Card, contains twelve fields and controls the type of plot, scaling, etc; the other card is a Title Card and contains the BCD information the user wants for labeling the graph and the name used on the X and Y-axes.

THE HEADER CARD

One Header Card is required for each plot; a total of three is required when three plots are displayed on one graph. The format for Header Cards is (2A8, 6I2, 4E12.8). The fields, in sequential order, are as follows:

Card Columns	Name	Description
1-8	XNAME	The BCD name of the variable to be plotted on the X-axis. This name must agree with one of the names used in the *CALCOMP data cards.
9–16	YNAME	BCD name of the variable to be plotted on the Y-axis. This must agree with a variable name used in the *CALCOMP data cards.

Card Columns	Name	Description
17-18	NH2	A fixed point 80 or 0 depending on whether another Y-axis is to be gen- erated. The first Header Card must contain an 80 since at least one Y- axis must always be generated.
19-20	IX	A fixed point number giving the desired length of the X-axis in inches.
21-22	IY	A fixed point number giving the length of the Y-axis in inches. If both IX and IY are 0, the plot will be 10" x 10".
23-24	JJ	JJ Plot
** *		0 Line 1 Symbol at each data point N Symbol at each Nth data point -N Only symbol is plotted (no line)
25-26	NP	Number of plots on graph. Fixed point (1, 2, or 3).
27-28	М	M Plot Symbol
		0 Routine selects a different symbol for each function on a given frame l Octagon 2 Triangle 3 + 4 X 5 Diamond 6 Up arrow 7 Half closed X 8 Z 9 Y 10 Square 11 * 12 Closed X 13 Prime 14 Star
29-40	Al	X-axis minimum. Floating point; if the manual scaling option is used, no point falling outside the desired limits will be plotted.

Card Columns	Name	Description			
41-52	A2	X-axis maximum.	Rest san	ne as Al.	
53-64	Bl	Y-axis minimum.	Rest sam	ne as Al.	
65-76	B2 .	Y-axis maximum.	Rest sam	ne as Al.	

TITLE CARDS

At least three title cards are needed for each graph. If multiple plots are requested (NP), and <u>if</u> a new Y-axis is desired, an additional Y-axis title card is needed. The title cards are read in (10A8) format and a complete card is used for each title. The first card following the Header Card is the graph title, the second is the X-axis label and the third is the Y-axis label.

SCALING OPTIONS

There are two scaling options, Automatic Scaling and Manual Scaling. If the former is to be used, the user enters zero for Al, A2, Bl and B2. Otherwise, he chooses his own limits and sets Al, A2, Bl and B2 accordingly.

SINGLE PLOT

For a single plot (one plot, X vs. Y) the following cards are necessary:

1 Header Card (NP = 1, NH2 = 80)

1 Plot Title Card

1 X-Axis Title Card

1 Y-Axis Title Card

MULTIPLE PLOTS

If two plots and a single Y-axis are desired, the cards indicated below are required:

1st Header Card (NP = 2, NH2 = 80)

1 Plot . Title Card

1 X-Axis Title Card

1 Y-Axis Title Card

2nd Header Card (NP = 2, NH2 = 0)

For this case no additional title cards are necessary following the second Header Card.

When multiple plots and multiple Y-axes are desired, additional Y-axis cards are necessary. For example, if the user needs three Y-axes, he must use the following cards:

1st Header Card (NP = 3, NH2 = 80)

1 Plot Title Card

1 X-Axis Title Card

1st Y-Axis Title Card

2nd Header Card (NP = 3, NH2 = 80)

2nd Y-Axis Title Card

3rd Header Card (NP = 3, NH2 = 80)

3rd Y-Axis Title Card .

EXAMPLE 9

TIME	LEM	L 80	0 0	0 5 1	5	0.	0.	0.	0.
*				LEM	X P	OSITION '	VS. TIME		10
		2			TI	ME IN SE	CONDS		
	-				X	POSITION	IN FEET		
LEM X	LEM	Y 80	0 0	0 5 1	5	-5.E+6	+5.E+6	-5.E+6	+5.E+6
	1.1					ORBIT PL	OT		
		•			Х	POSITION	IN FEET		
					Y	POSITION	IN FEET		
TIME O	MEGA	Y 80	0 0	0 0 3	0	0.	0	0.	0.
BO	DY RA	TE 1	Κ =	LINE,	Y	= OCTAGO	N, $Z = TR$	IANGLE	
					• 1	TIME IN	SECONDS		
2				BODY	RA	TE IN RA	DIANS/SEC	OND	
TIME O	MEGA	Y O	0 0	-5 3	1	0.	. 0.	0.	0.
TIME O	MEGA	Ζ Ο	0 0	-5 3	2	0.	0	0.	0.
77							5	· · · · ·	
88			94	1					

5.2 Standard Plot Input

Variables are plotted by the standard plot routine from a set of parameters output under user control (*PROGRAMS) by the MAIN Processor subroutine PLOTAP. If this output is desired, a ζ LOAD, 45 and a ζ RUN card, followed by the data set described below, is necessary.

5.2.1 Standard Plot Data Description

The standard plot routine plots from a set list (See Section 5.2.2) of variables and produces a set of CALCOMP graphs. Each graph may have up to three variables plotted against one independent variable. A job title card, one plot title card for each graph, the sets of variable request cards, and a job end card are required for standard plot output. Description of these cards and the associated data sets follow :

JOB TITLE CARD

One job title card is necessary for a set of graphs. It is the first card in the data deck.

Card Columns	Name	Description
1 -	IAST	Asterisk in the first column of the card.
2-73	ITITLE	Job title to be printed on each page of printed output and at the bottom of each plot.
75-79	IPRNT .	Print flag; if tabular print desired, insert word "PRINT".

PLOT TITLE CARD

One plot title card is required for each graph. This card is the first card in each plot sequence.

Card Columns	Name	Description
1	IDS	Dollar sign in first column.
2-73	GTITLE	Grid title to be applied to this plot.

VARIABLE REQUEST CARD

One of these cards must appear for each variable in a particular plot. The first card is reserved for the independent variable and the ones that follow are for the dependent variables. At least two, but no more than four, of these cards must be present for each plot.

Card Columns	Name	Description
1-8	NAME	Variable name as taken from list of standard variables. Left justified.
10-29 。	TITLE	NAME to be applied to axis on which variable is presented.
35-49	MIN .	Minimum value for variable; if blank, it will be computed. (E15.8).
55-69	MAX .	Maximum value for variable; if blank, it will be computed. (E15.8).
79	IPL	Used to determine end of variable requests for particular plot.
		 1 - another variable follows 0 - last request is this sequence.

JOB END CARD

This card terminates data card input. It must be the last card in the data deck.

Card <u>Columns</u>	Name	Description .
1	IDS	Dollar sign in column l
2-4	END	Word "END"

Example 10 shows how the cards are to be arranged for standard plotting.

EXAMPLE 10

•

* CAS	SE 2.7 A SECOND TPI	PRIN
	OSITION COORDINATES IN AGS COORDINATE SYSTEM	
TIME	MISSION TIME (SEC)	
	X COMPONENT (FEET)	
	Y COMPONENT (FEET)	
RZ	Z COMPONENT (FEET)	a serie de la companya de la company
	ELOCITY COORDINATES IN AGS COORDINATE SYSTEM	
TIME	MISSION TIME (SEC) X COMPONENT (FT/SEC) X COMPONENT (FT/SEC)	
VX	X COMPONENT (FT/SEC)	·····
VY	CONFUNCION (1) SEC	
VZ	Z COMPONENT (FT/SEC)	and the second
SCSM P	OSITION COORDINATES IN INERTIAL COORDINATE SYSTEM	
TIME	MISSION TIME (SEC)	
RXI	X COMPONENT (FEET)	
RYI	Y COMPONENT (FEET)	
RZI ·	Z COMPONENT (FEET)	
	ELOCITY COORDINATES IN INERTIAL COORDINATE SYSTEM	
TIME	MISSION TIME (SEC)	
	X COMPONENT (FT/SEC)	
VYI	Y COMPONENT (FT/SEC)	······································
VZI	Corn Collin, di l'Scor	
	Z COMPONENT (FT/SEC)	and the second
SLM FU	SITION COORDINATES IN AGS COORDINATE SYSTEM	
	MISSION TIME (SEC)	
	X COMPONENT (FEET)	
LRY		and a second
LRZ	Z COMPONENT (FEET)	
	LOCITY COORDINATES IN AGS COORDINATE SYSTEM	
TIME .		
LVX	X COMPONENT (FT/SEC)	
LVY	Y COMPONENT (FT/SEC)	
LV2	Z COMPONENT (FT/SEC)	
SLM PO	SITION COORDINATES IN INERTIAL COORDINATE SYSTEM	
TIME	MISSION TIME (SEC)	
LRXI	X COMPONENT (FEET)	
	Y COMPONENT (FEET)	* · · · · · · · · · · · · · · · · · · ·
LRZI	Z COMPONENT (FEET)	and a second
	LOCITY COORDINATES IN INERTIAL COORDINATE SYSTEM	
TIME	MISSION TIME (SEC)	
	X COMPONENT (FT/SEC)	
LVYI	Y COMPONENT (FT/SEC)	1
LV21	Z COMPONENT (FT/SEC)	
\$TOTAL	PROPELLANT FLOW RATE	
AGS TI	ME AGS TIME (SEC)	
WDOT	PROPELLANT FLOW RATE	(
SRANGE	FROM LM TO CSM	
TIME	MISSION TIME (SEC)	
RRPR	ENVIRONMENTS	N. 189
RR	AGS	
SEND		

. 37

•

. .

- 34

- 5.2.2 Standard Plot Variables
- WD
- NO.
- NUMBERS IN THIS COLUMN REFER TO THE POSITION OF THE VARIOUS PLOT PARAMETERS IN THE OUTPUT RECORD
 - OF THE PLOT TAPE.
- PARAM MNEMONIC ASSOCIATED WITH EACH VARIABLE. USED TO NAME REQUEST VARIABLE FOR PLOT PROCESSING.
- UNITS -- UNITS OF PARAMETER ON OUTPUT TAPE.
- REMARKS BRIEF DESCRIPTION OF PARAMETERS TO HELP IDENTIFY THEM.

WD	PARAM		
NO	NAME	UNITS	REMARKS
1	TIME	SEC	PRESENT TIME
	AGS TIME	SEC	AGS TIME
3	AllPR		LM COSINE MATRIX (STABLE MEMBER TO BODY AXIS
	ALZPR		TRASFORMATION - ENVIRONMENTS)
5	A13PR		
6	A21PR		
7	AZZPR		
	A23PR		
9	A31PR		
10	AJEPR	· · · · · · · · · · · · · · · · · · ·	the a transformation to an an an an an and the second second second second second second second second second s
. 11	A33PR		
12	EX	RADIANS	AGS ATTITUDE CONTROL ERROR COMMANDS ABOUT THE
13	EY		X, Y, AND Z BODY AXIS
14	EZ		the second se
15	EXP	ARC MIN	ALIGNMENT ERRORS ABOUT X. Y. AND Z BODY AXIS.
16	EYP .	- 1.46 A	(AGS VS ENVIRONMENTS)
17	EZP		
. 18	A11		LM COSINE MATRIX (STABLE MEMBER TO BODY AXIS
19	A12		TRANSFORMATION - AGS)
20	A13		
21	A21		
22	A22		and the second secon
. 23	A23		
24	-A31	and the second second	the second s
25	A32		
26	A33	a second second	and the second
27	DAXPR	RADIANS	ROTATIONAL DISPLACEMENTS OF THE VEHICLE ABOUT ITS
28	DAYPR	RADIANS	X, Y, AND Z AXIS LAST 20 MSEC (ENVIRONMENTS)
29	DAZPR	RADIANS	
30	DAX	RADIANS	ROTATIONAL DISPLACEMENTS OF THE VEHICLE ABOUT ITS
31	DAY	RADIANS	X, Y, AND Z AXIS LAST 20 MSEC (AGS)
	DAZ	RADIANS	and the second
33	UVXPR	FT/SEC	VELOCITY GAINED ALONG THE X. Y. AND Z BODY AXIS
34	DVYPR	FT/SEC	LAST 20 MSEC (ENVIRONMENTS)
. 35	DV2PR	FT/SEC	
36 -	DVX	FT/SEC	VELOCITY GAINED ALONG THE X, Y, AND Z BODY AXIS
37	DVY	FT/SEC	LAST 20 MSEC (AGS)
38		FT/SEC	the second se
. 39	VD1XPR	FT/SEC	COMPONENTS OF THE SENSED ACCUMULATED VELOCITY IN
	Contract Contract of Contract	and construction to be	

	40	VD1YPR	FT/SEC	BODY COORDINATES. UPDATED EVERY 40 MSEC
- 2	41	VO1ZPR	FT/SEC	(ENVIRONMENTS)
-	42	VD1X	FT/SEC	COMPONENTS OF THE SENSED ACCUMULATED VELOCITY IN
÷	43		FT/SEC	BODY COORDINATES, UPDATED EVERY 40 MSEC (AGS).
	44		FT/SEC	
0	45	ТХБА	LBS	THRUST ALONG THE X. Y. AND Z BODY AXIS
	46	TYBA	LBS	(ENVIRONMENTS)
12-10	47	TZEA	LBS	and a second
	48	INRGML	DEGREES	INNER, MIDDLE, OUTER GIMBAL ANGLES NECESSARY FOR
	49	MIDGML	DEGREES	TRANSFORMATION TO BODY AXIS COORDINATES FROM
	50	OUTGML	DEGREES	STABLE MEMBER COORDINATES
	51	ACCEL	FT/5/5	MAGNITUDE OF TOTAL ACCELERATION (ENVIRONMENTS)
	52	DELVS -	FT/SEC	MAGNITUDE OF SENSED ACCUMULATED VELOCITY (ENV)
	53	LHEUL1	DEGREES	EULER ROTATIONS REQUIRED TO TRANSFORM X. Y. AND Z
	54	LHEUL2	CEGREES	AXIS INTO THE BODY AXIS SYSTEM
	55	LHEUL3	DEGREES	
	56	AT	FT/S/S	MAGNITUDE OF TOTAL ACCELERATION ALONG BODY AXIS-AGS
6. to	57	WT	LBS .	TOTAL WEIGHT OF VEHICLE (ENVIRONMENTS)
	58	DELVGX	FT/SEC	COMPONENTS OF THE VELOCITY YET TO BE GAINED (AGS)
	59	DELVGY	FT/SEC	
	60	DELVGZ	FT/SEC	
	61	WDOT	LBS/SEC	TOTAL PROPELLANT FLOW RATE
	62	ACCXBA	FT/S/S	ACCELERATIONS ALONG THE X. Y. AND Z BODY AXIS
	.63	ACCYBA	FT/S/S	(ENVIRONMENTS)
	64	ACCZBA	FT/S/S	
	65	RXPR	FEET	POSITION COORDINATES COMPUTED IN THE INERTIAL
	66	RYPR	FEET	SYSTEM AND TRANSFORMED TO AN AGS ALIGNED
	67	RZPR	FEET	COORDINATE SYSTEM -CSM (ENVIRONMENTS)
	68	VXPR	FT/SEC	VELOCITY COORDINATES COMPUTED IN THE INERTIAL
	69	VYPR	FT/SEC	SYSTEM AND TRANSFORMED TO AN AGS ALIGNED
-	70	VZPR	FT/SEC	COORDINATE SYSTEM -CSM (ENVIRONMENTS)
	71	RX	FEET	POSITION COORDINATES IN THE AGS COORDINATE SYSTEM-
	72	RY	FEET	CSM (AGS)
	73	RZ	FEET	
-	74	*VX	FT/SEC	VELOCITY COORDINATES COMPUTED IN THE AGS COORDINATE
-	75	VY ·	FT/SEC	SYSTEM - CSM (AGS)
	76	VZ ·	FT/SEC	Stoten oon most
	77	RXI	FEET	POSITION COORDINATES IN AN INERTIAL COORDINATE
	78.	RYI	FEET	SYSTEM - CSM (ENVIRONMENTS)
	79	RZI	FEET	
	80	VXI	FT/SEC	VELOCITY COORDINATES IN AN INERTIAL COORDINATE
	81	VYI	FT/SEC	SYSTEM - CSM (ENVIRONMENTS)
	82	VZI	FT/SEC	
	83	RPR	FEET	MAGNITUDE OF RADIUS VECTOR - CSM (ENVIRONMENTS)
	84	GAMI	DEGREES	ANGLE BETWEEN LOCAL HORIZ. AND INST. VEL. VEC ENV.
	85	PHI	DEGREES	GEODETIC LATITUDE - CSM
	86	RDOTPR	FT/SEC	RADIAL VELOCITY - CSM (ENVIRONMENTS)
	87	ALTPR	FEET	ALTITUDE ALONG RADIUS VECTOR ABOVE BODY-CSM (ENV)
	88	VPR	FT/SEC	MAGNITUDE OF VELOCITY VECTOR - CSM (ENVIRONMENTS)
	89	LAMDA	DEGREES	INST. LONGITUDE EASTWARD FROM GREENWICH - CSM
	90	PHIP	DEGREES	GEOCENTRIC LATITUDE - CSM
	-91	VHPR	FT/SEC	HORIZONTAL VELOCITY - CSM (ENVIRONMENTS)
	92	LRXPR	FEET	POSITION COORDINATES COMPUTED IN THE INERTIAL
	93	LRYPR	FEET	SYSTEM AND TRANSFORMED TO AN AGS ALIGNED
-	94	LRZPR	FEET	COORDINATE SYSTEM - LM (ENVIRONMENTS
-	95	LVXPR	FT/SEC	VELOCITY COORDINATES COMPUTED IN THE INERTIAL
1	96	LVYPR	FT/SEC	SYSTEM AND TRANSFORMED TO AN AGS ALIGNED
		·LVZPR	FT/SEC	COORDINATE SYSTEM - LM (ENVIRONMENTS)
	98	LRX .	FEET	POSITION COORDINATES IN THE AGS COORDINATE SYSTEM-
		-114		TOTAL AND CONDENTED AN THE NOT CONDENTED TOTEM
		A 120 23		

and the second			
99	LRY	FEET	LM (AGS)
100	LRZ	FEET	
101	LVX	FT/SEC	VELOCITY COORDINATES COMPUTED IN THE AGS COORDINATE
102	LVY	FT/SEC	SYSTEM - LM (AGS)
103	LVZ	FT/SEC	
-104	LRXI	FEET	LM POSITION COORDINATES IN AN INERTIAL COORDINATE
105	LRYI	FEET	SYSTEM (ENVIRONMENTS)
1.06	LRZI	FEET	
107	LVXI	FT/SEC	VELOCITY COORDINATES IN AN INERTIAL COORDINATE
108	LVYI	FT/SEC	SYSTEM - LM (ENVIRONMENTS)
109	LVZI	FT/SEC	
1.1.0	LAPR	FEET	LM MAGNITUDE OF RADIUS VECTOR (ENVIRONMENTS)
* 111	LGAMI	DEGREES	LM ANGLE BETWEEN LOCAL HORIZONTAL AND
			INSTATANEOUS INERTIAL VELOCITY VECTOR (ENV)
112	LPHI	DEGREES	LM GEODETIC LATITUDE
113	LRDOTPR	FT/SEC	LM RADIAL VELOCITY (ENVIRONMENTS)
114	LALTPR	FEET	LM ALTIDUDE ALONG RADIUS VECTOR ABOVE BODY (ENV)
115	R	FEET	LM MAGNITUDE OF RADIUS VECTOR (ENVIRONMENTS)
110	LVPR	FT/SEC	LM MAGNITUDE OF VELOCITY VECTOR (ENVIRONMENTS)
	LLAMDA	DEGREES	LM INST. LONGITUDE EASTWARD FROM GREENWICH
118	LPHIP	DEGREES	LM GEOCENTRIC LATITUDE
- 119	LVHPR	FT/SEC	LM HORIZONTAL VELOCITY (ENVIRONMENTS)
120	V	FT/SEC	MAGNITUDE OF THE VELOCITY VECTOR
121	A1180		DIRECTION COSINE FOR DESIRED THRUST DIRECTION
122	A1280		OF Z BODY AXIS (ENVIRONMENTS)
123	AI3BD		
124	A31BD		
125	A32BD		
126	A33BD		
127	GRAVX	FT/S/S	. GRAVITY ACCELERATION COMPONENTS ALONG X, Y, Z BODY
-128	GRAVY	FT/S/S	AXIS (ENVIRONMENTS)
129	GRAVZ	FT/S/S	
130	ALT	FEET	ALTITUDE ALONG RADIUS VECTOR ABOVE BODY (AGS)
- 131	PERGPR	N.MI.	PERIGEE ALTITUDE ABOVE SPHERICAL REFERENCE BODY-ENV
132	APOGPR	N.MI.	APOGEE ALTITUDE ABOVE SPHERICAL REFERENCE BODY -ENV
133	DELVG	FT/SEC	MAGNITUDE OF VELOCITY YET TO BE GAINED (AGS)
	PERG	N.MI.	PERIGEE ALTITUDE ABOVE SPHERICAL REFERENCE BODY-AGS
		N.MI.	APOGEE ALTITUDE ABOVE SPHERICAL REFERENCE BODY -AGS
	28.11	FT/SEC	VELOCITY DESIRED IN EXTERNAL DELTA-V MODE IN
	28.12	FT/SEC	HORIZONTAL, OUT OF PLANE, AND RADIAL DIRECTION
138		FT/SEC	RESPECTIVELY
139		FT/SEC	VELOCITY GAINED IN EXTERNAL DELTA-V MODE IN AGS
140		FT/SEC	INTERNAL COORDINATES
141		FT/SEC	Internal overbrinner
142		DEGREES	ORBIT INCLINATION WITH RESPECT TO EQUAT. PLANE-AGS
	DESNOD	DEGREES	ANGLE BETWEEN DESCENDING NODE AND LONG. OF X AXIS
144	ECC	Je Sheld	ODDIT ECCENTRICITY
145		FEET	PERIGEE RADIUS (ENVIRONMENTS)
146	VPERG	FT/SEC	
147	PERIOD		ORBIT PERIOD
148		FEET	APOGEE RADIUS (ENVIRONMENTS)
149		FT/SEC	
150		SEC	In several several to the several s
151	ERX	FFFT	NAVIGATION ERRORS IN POSITION COORDINATES OF AGS
152	ERY	FEET	COORDINATE SYSTEM
153		FEET	Contracturity 2121En .
154		FT/SEC	NAVIGATION ERRORS IN VELOCITY COORDINATES OF
155	EVY.		AGS COORDINATE SYSTEM
156	EVZ	FT/SEC	AND CONDINATE DISTEN
100	F17	- IT SEC	

157	EVH	FT/SEC	LOCAL HORIZONTAL VELOCITY ERROR
158	EALTRT	FT/SEC	ALTITUDE RATE ERROR
159		FEET	ALTITUDE ERROR
160	RUCT	FT/SEC	RADIAL VELOCITY (AGS)
	YPR	FEET	LM DISTANCE OUT OF CSM ORBITAL PLANE (ENVIRONMENTS)
162	VYOPR -		WEDGE VELOCITY (ENVIRONMENTS)
163	VH	FT/SEC	HORIZONTAL VELOCITY (AGS)
164	Y	FEET	LM DISTANCE OUT OF CSM ORBITAL PLANE (AGS)
165	WVEL	FT/SEC	WEDGE VELOCITY (AGS)
166	RRPR	FEET	RANGE FROM LM TO CSM (ENVIRONMENTS)
167	RRETPR	FEET	RANGE RATE FROM LM TO CSM (ENVIRONMENTS)
168	RMSER	FEET	MAGNITUDE OF THE POSITION ERROR
169	RR	FEET	RANGE FROM LM TO CSM (AGS)
- 170	RRRT	FT/SEC	RANGE RATE FROM LM TO CSM (AGS)
171	RMSEV	FT/SEC	MAGNITUDE OF VELOCITY ERROR
172	RRE	FEET	RANGE ERROR
173	RRRTE	FT/SEC	RANGE RATE FROM LM TO CSM ERROR
174	XPCH	DEGREES	ANGLE BETWEEN X AND Z AXIS AND LOCAL HORIZONTAL
175	ZPCH	DEGREES	PLANE (ENVIRONMENTS)
176	WEDANG	DEGREES	ANGLE BETWEEN UNIT VECTOR PERPENDICULAR TO LM AND
		· · ·	CSM ORBITAL PLANES (ENVIRONMENTS)
° 177	XAZ	DEGREES	ANGLES BETWEEN PROJECTION OF X AND Z BODY AXIS INTO
178	ZAZ	DEGREES	LOCAL HORIZONTAL PLANE AND PROJECTION OF INERIAL
			VELOCITY VECTOR INTO LOCAL HORIZONTAL PLANE
179	OMEGAX	DEG/SEC	ANGULAR VELOCITY VECTOR OF NAV BASE
. 180	OMEGAY	DEG/SEC	IN NAV BASE COORDINATES (ENVIRONMENTS)
181	OMEGAZ	DEG/SEC	
182	SALPAR	and the second second	SINE OF EULER ANGLE ALPHA REGISTER USED FOR
			CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
183	CALPAR		COSINE OF EULER ANGLE ALPHA REGISTER USED FOR
· · ·			CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
184	SBETAR		SINE OF EULER ANGLE BETA REGISTER USED FOR
			CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
- 185	CBETAR	And the second s	COSINE OF EULER ANGLE BETA REGISTER USED FOR
	s		CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
186	SGAMAR		SINE OF EULER ANGLE GAMMA REGISTER USED FOR
			CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
187	CGAMAR		COSINE OF EULER ANGLE GAMMA REGISTER USED FOR
			CONTROL OF TOTAL ATTITUDE DISPLAY (AGS)
188	EXR	FEET	ROTATIONAL ATTITUDE ERRORS ABOUT THE X.Y. AND
189	EYR	FEET	Z BODY AXIS REGISTERS USED FOR CONTROL OF
190	EZR	FEET	THE VEHICLE AND FOR DISPLAY (AGS)
. 191	ALTR	FEET	ALTITUDE REGISTER FOR CONTROL OF NAV DISPLAYS (AGS)
- 192	ALTRTR	FT/SEC	그는 것 것 같아요. 그는 것 같아요. 이렇게 잘 가셨는 것 이야? 것 가까? 이 가까? 이 나는 것이 아니는 것이 가지 않는 것이 같아요. 나는 것 같아요. 가지 않는 것 같아요. 아니는 것이 아니는 것이 나는 것이 않는 것이 않
193	LATVR	FT/SEC	LATERAL VELOCITY REGISTER FOR CONTROL OF NAV
			DISPLAYS - AGS

6.0 SIMULATOR OUTPUT

6.1 MAIN Processor User Routines

Several routines have been written and incorporated in the AGS MAIN Processor for user controlled functions. The scheduling of these routines is controlled by the user via the *PROGRAMS Preprocessor option. Listed below are names of the routines currently available and a brief description of their functions.

- CHKPNTW checkpoint write This routine will generate checkpoint dumps for restart of the simulator.
- HIGHFQ high frequency standard print This routine prints out the standard high frequency print variables.
- LOWFQ low frequency standard print This routine prints out the standard low frequency print variables.
- MEMDUMP memory dump This routine provides an octal dump of AEA memory. (No delta time)
- PLOTAP standard plot tape output This routine will dump out on tape the variables in the standard plot output for plotting in the PLOT Processor.
- TERMIN termination routine This routine will terminate the MAIN Processor execution. (No delta time).

6.2 Standard Print Output

Parameters listed under Initialization Print will be printed at the beginning of the simulation run. Those parameters listed under High Frequency Print and Low Frequency Print are controlled by the routines HIGHFQ and LOWFQ, respectively.

6.2.1 Initialization Print

CSM ORBITAL PARAMETERS

APØGPR	5	PERGPR	. RAPØG	RPERG	PERIØD
VAPOG		VPERG	ECC	INCL.	DESNØD

LM RI TO SM EULER ANGLES

EULER1 EULER2 EULER3

6.2.2 High Frequency Print

		LM		
Ϋ́ΙΜΕ		AGS TIME		
Allpr	Al2PR	Al3PR	EX	EXP
A21PR •	A22PR	A23PR	EY .	EYP
A31PR	A32PR	A33PR	EZ	EZP
All	A12 ·	A13	DAXPR	DAX
A21	A22	A23	DAYPR	DAY
A31	A32.	A33	DAZPR	DAZ
DVXPR	DVX	VD1XPR	VDIX	TXBA
DVYPR	DVY	VDIYPR	VDIY	TYBA
DVZPR	DVZ	VDIZPR	VD1Z	TZBA
INRGML	LHEUL1	DELVGX	ACCXBA	El ·
MIDGML	LHEUL2	DELVGY	ACCYBA	E2 :
ØUTGML	LHEUL3	DELVGZ	ACCZBA	STAGED
ACCEL	АТ	EXT1.	EXT2 ·	DELVS
DEDAAD	DEDADT	WT	WDØT	
OMEGAX	OMEGAY	OMEGAZ		
A	GS FLAGS, SW	ITCHES, AND	REGISTERS	
S00	S07	S10	S11	S 14
S16	S17	S 507	S623	DEL2
DEL5	DEL20	DEL21 -	MU8	MUlo

•	AGS FI	LAGS, SWITCH	ES, AND REGIS	STERS (cont.)	<u>)</u>
• *	BRNCON	DISCWL	DISCW2	SALPAR	CALPAR
	SBETAR	CBETAR	SGAMAR	CGAMAR	EXR
	EYR .	EZR	ALTR	ALTRTR	LATVR
	TELEMR	DEDA R	DEDA R		
	- 	.		•	
6.2.	3 Low Freque	ency Print	4.19. I		
	0		CSM		1812.
	TIME		*		
	RXPR	RX	RXI	RPR	VPR
•	RYPR	RY	RYI	GAMI	LAMDA
	RZPR	RZ .	RZI	PHI	PHIP
	VXPR	VX	VXI .	DØTPR	VHPR
	VYPR	VY	VYI	ALTPR	•
	VZPR	VZ	VZI	•	
			TM		
			LM	•	
	TIME		AGS TIME	*	
-	RXPR	RX	RXI	RPR .	VPR
	RYPR	RY	RYI	GAMI	LAMDA
	RZPR	RZ	RZI	PHI	PHIP
	VXPR	VX	VXI .	RDØTPR	VHPR
	VYPR	УY	VYI	ALTPR	
	VZPR	VZ	VZI	R	v
	AllBD	A31BD	GRAVX	ALT	DELVG
	A12BD	A32BD	GRAVY	PERGPR	PERG

	말에서 가지 않는		LM (cont.)		
	A13BD	A33BD	GRAVZ	APØGPR	APØG
	28J1	DQSX	INCL	RPERG	RAPØG
	28J2	DQSY	Desnød	VPERG	VAPØG
	28J3	DQSZ	ECC	PERIØD	TPERG
5	ERX	EVX	EVH .	RDØT	VH
	ERY	EVY	EALTRT	YPR	Y.
	ERZ	EVZ	EALT	VYOPR	VYO
	RRPR	RR	RRE	WEDANG	
	RRRTPR	RRRT .	RRRTE .	ХРСН	XAZ
	RMSER	RMSEV		ZPCH	ZAZ

6.2.4 Standard Print Output Definitions

- NOTES: A. This letter following a definition indicates the related parameters are calculated in the ENVIRONMENTS simulation.
 - B. This letter following a definition indicates the related parameters are calculated in the AGS flight program.

Mnemonic

Definition

28J1, 28J2 Velocity desired in the external AV 28J3 mode in the horizontal, out of plane, and radial direction, respectively. (feet/sec)

All, Al2 LM cosine matrix (stable member to Al3. body axis transformation).^B

AllBD, Al2BD, Direction cosine for the desired thrust direction of the X body axis.^B

A31BD, A32BD, Direction cosines for the desired thrust direction of the Z body axis.^B

Mnemonic	Definition
AllPR, Al2PR, Al3PR, A21PR, A22PR, A23PR, A31PR, A32PR,	LM cosine matrix (stable member to body axis transformation). ^A
A33PR	
DELT2	Staged Flag
DEL 5	Altitude hold flag.
DEL 20	LOGIC flag for engine control.
DEL 21	Lunar surface flag.
El .	Flag indicating descent engine on or off. ^B
E2 ·	Flag indicating ascent engine on or off. ^B
EXT1	Flag indicating that PGNCS commanding descent engine on or off.
EXT2	Flag indicating that PGNCS commanding ascent engine on or off.
MU8	Ullage counter.
MULO	Minor cycle counter.
S00	AGS function selector
S07	Reference frame selector for external ΔV mode.
S10	Guidance mode selector.
S11	RCS - DPS/APS selector.
S16 ·	CDH Apsidal selector.
S17	CSI elliptical/circular orbit logic.
S507	Orient Z body axis to thrust axis.
S623	Crew selection of steering vector.
ACCEL	Magnitude of the total acceleration (ft/sec ²). ^A

Mnemonic	Definition
ACCXBA, ACCYBA, ACCZBA	Accelerations along the X, Y and Z body axis (feet/sec ²). ^A
AGS TIME	AGS time (sec). ^B
ALT	Altitude of vehicle above the surface of the reference body measured along the radius vector (feet)B
ALTPR	Altitude of vehicle above the surface of the reference body measured along the radius vector $(feet)^A$
ALTR	Altitude register used for the control of the Navigation Displays.
ALTRTR	Altitude rate register used for control of the Navigation Displays.
.APOG	Apogee altitude above the spherical ref- erence body (nautical miles). ^B
APOGPR	Apogee altitude above the spherical ref- erence body (nautical miles).A
AT .	Magnitude of the total acceleration (ft/sec ²). ^A
BRNCON	Branch control output in octal.
CALPAR	Cosine of the Euler angle alpha register which is used for control of the Total Attitude Display.
CBETAR	Cosine of the Euler angle beta register which is used for control of the Total Attitude Display.
CGAMAR	Cosine of Euler angle gama register which is used for control of the Total Attitude Display.
DAX, DAY, DAZ	Rotational displacements of the vehicle about its X, Y, and Z axis last 20 msec (radians). ^B
DAXPR, DAYPR, DAZPR	Rotational displacement of the vehicle about its X, Y, and Z axis last 20 msec (radians). ^A

: 1

Mnemonic

Definition

DEDAAD

Data Entry and Display Assembly (DEDA)

DEDADT

DEDA R

DEDA data last entry or readout.^B

address last entry or readout.^B

Data Entry and Display Assembly (DEDA) register, a four bit input and output register which communicates serially with the DEDA and the AEA.

DELVG

Magnitude of the velocity yet to be gained (feet/sec).^B

Magnitude of the sensed accumulated

Discrete word 1, an 8 bit AEA input

Discrete word 2, a 7 bit AEA input

Velocity gained in the external ΔV mode in AGS inertial coordinates. (feet/sec).^B

Velocity gained along the X, Y, and Z

Velocity gained along the X, Y, and Z

body axis last 20 msec (feet/sec).^B

body axis last 20 msec (feet/sec).A

Angle between the descending node and the longitude of the X axis in the AGS reference coordinate system (degrees).^A

velocity (feet/sec).A

DELVGX, DELVGY, Components of the velocity yet to be DELVGZ gained (feet/sec).^B

DELVS

DESNOD

DISCWI

DISCW2

DQSX, DQSY, DQSZ

DVX, DVY, DVZ

DVXPR, DVYPR, DVZPR

EALT

Altitude error (feet).

EALTRT Altitude rate error (feet/sec).

ECC

Orbit eccentricity.

register.

register.

ERX, ERY, ERZ Navigation errors in position coordinates of AGS coordinate system (feet).

Mnemonic	Definition
EULER1, EULER2, EULER3	First, second and third Euler rotations required for transformations to Stable Member coordinates from Reference Inertial coordinates (degrees).
EVH	Navigation errors in velocity coordinates of AGS coordinate system (feet/sec).
EVX, EVY, EVZ	Navigation errors in velocity coordinates of AGS coordinate system (feet/sec).
EX, EY, EZ	AGS attitude control error commands about the X, Y, and Z body axis (radians). ^B
EXP, EYP, EZP	Alignment errors about X, Y and Z body axis. (arc min) (AGS vs Environments)
EXR, EYR, EZR	Rotational attitude errors about the X, Y, and Z body axis registers used for control of the vehicle and for display.
GAMI	Angle between the local horizontal and the instantaneous inertial velocity vector (deg). ^A
GRAVX, GRAVY, GRAVZ	Gravity acceleration components along the X, Y and Z body axis (feet/sec ²). ^A
INCL	Orbit inclination with respect to equatorial plane (degrees). A
INRGML, MIDGML, OUTGML	Inner, middle, outer Gimbal angles necessary for transformation to Body axis coordinates from Stable Member coordinates (degrees).
LAMDA	Instantaneous longitude of the vehicle measured positive eastward from the Greenwich Meridian (degrees).
LATVR	Lateral velocity register used for control of the Navigation Displays.
LHEUL1, LHEUL2, LHEUL3	Euler rotations required to transform from a local horizontal coordinate system, where the X axis is defined by $(\overline{R} \times \overline{V})$ x R the Z axis is defined $-\overline{R}$, and the Y axis completes a right hand system, into the body axis system (degrees).

Mnemonic	Definition
OMEGAX, OMEGAY OMEGAZ	Angular velocity vector of nav base in nav base coordinates degrees/sec. ^A
PERG	Perigee altitude above the spherical reference body (nautical miles). ^B
PERGPR	Perigee altitude above the spherical reference body (nautical miles). ^A
PERIOD	Orbit period (seconds).
PHI	Geodetic Latitude (degrees).
PHIP	Geocentric Latitude (degrees).
RAPOG	Apogee radius (feet). ^A
R	Magnitude of the radius vector (feet). ^B
RDØT	Radial Velocity (feet/sec). ^B
RDØTPR	Radial Velocity (feet/sec).A
RMSER	Magnitude of the position error (feet).
RMSEV	Magnitude of the velocity error (feet/sec).
RPERG	Perigee radius (feet). ^A
RPR	Magnitude of the radius vector (feet).A
RR	Range from LM to CSM (feet). ^B
RRE	Range error (feet).
RRPR	Range from LM to CSM (feet).A
RRRT	Range rate from LM to CSM (feet/sec). ^B
RRRTE	Range rate from LM to CSM error (feet/sec).
RRRTPR	Range rate from LM to CSM (feet/sec).A
RX, RY, RZ	Position coordinates in the AGS coordinate system (feet). $^{\rm B}$
RXI, RYI, RZI	Position coordinates in an inertial coord- inate system (feet). ^A

.50

Mnemonic	Definition
RXPR, RYPR, RZPR	Position coordinates computed in the in- ertial system and transformed to an AGS aligned coordinate system (feet).A
SALPAR	Sine of the Euler angle alpha register which is used for control of the Total Attitude Display.
SGAMAR	Sine of Euler angle gamma register which is used for control of the Total Attitude Display.
STAGED	Flag indicating that the descent engine has been staged. ^B
TELEMR	Telemetry Register, a 24 bit shift regis- ter which is used to output serial telem- etry data.
TIME	Present time (sec).A
TPERG	Time to perigee (sec). ^B
ТХВА, ТҮВА, ТZВА	Thrust along the X, Y and Z body axis (pounds). ^A
v	Magnitude of the velocity vector (ft/sec).B
VAPOG	Apogee velocity (ft/sec).
VDIX, VDIY, VDIZ	Components of the sensed accumulated velocity in body coordinates, updated every 40 msec (ft/sec). ^B
VD1XPR, VD1YPR, VD1ZPR	Components of the sensed accumulated velocity in body coordinates, updated every 40 msec in AGS (ft/sec). ^A
VH	Horizontal velocity (ft/sec).B
VHPR	Horizontal velocity (ft/sec).A
VPERG	Perigee velocity (ft/sec)
VX, VY, VZ	Velocity coordinates computed in the AGS coordinate system (ft/sec).

Mnemonic	Definition
VXPR, VYPR, VZPR	Velocity coordinates computed in the in- ertial system and transformed to an AGS aligned coordinate system (ft/sec). ^A
VXI, VYI, VZI	Velocity coordinates in an inertial coordinate system (ft/sec) ^A
¥ 	Wedge distance, LM distance out of CSM orbital plane (feet). ^B
YPR ,	Wedge distance, LM distance out of CSM orbital plane (feet). ^A
WDØT °	Total propellant flow rate (pounds/sec).A
WEDANG	Wedge angle, angle between unit vectors perpendicular to CSM and LM orbital planes (degrees). ^A
VYO .	Wedge velocity (ft/sec). ^B
VYOPR	Wedge velocity (ft/sec).A
XAZ	Angle between the projection of the X body axis into the local horizontal plane and the projection of the inertial velocity vector into the local horizontal plane (degrees). ^A
ХРСН	Angle between X body axis and local hori- zontal plane. (degrees) ^A
ZAZ	Angle between the projection of the Z body axis into the local horizontal plane and the projection of the inertial velocity vector into the local horizontal plane. (degrees). ^A
ZPCH	Angle between Z body axis and local hori- zontal plane (degrees). ^A

·52

6.3 Trace Format

The Trace consists of nine output parameters. They are as follows:

- 1) Instruction address (octal)
- 2) Instruction name
- 3) Operand address (octal)

- 4) Contents of the A-register (octal)
 5) Contents of the Q-register (octal)
 6) Contents of the operand address (octal)
 7) Contents of the index register
- 8) The overflow indicator (1 means overflow)
- 9) Contents of the minor cycle counter (decimal)

These parameters represent the state after instruction execution.

EXAMPLE 11

		5						
LOC	NAME	OP.ADD	AREG	QREG	OP.	INDX	O.F.	CYCLE
7010	ADD	0760	377600	001000	210010	0	1	400

APPENDIX

. 1

THE READ DATA ROUTINE

Identification

READ DATA, Mnemonic Input Routine CDC 3600/3800 COMPASS Subroutine D. H. Hay and Bruce Johnson, May 20, 1964 Computation and Analysis Division Manned Spacecraft Center

Acknowledgement

This subroutine is a direct translation of the IBMAP subroutine, SG RDAT, developed by Mr. Robert P. Crabtree of the Manned Spacecraft Center. The FØRTRAN calling sequences and input data card formats are identical for the two routines. Conversion algorithms and diagnostic procedures are similar.

Purpose

This subroutine allows the FØRTRAN 63 or CØMPASS user to enter data into his program at execution time without the use of, or the restrictions normally imposed by, formats. As many or as few variables as desired may be entered with each data set. Variables not entered will not be changed in value but will remain as they were before the subroutine was called. The data can be either punched in a free field or in a fixed field as all blanks are ignored. Legal modes include Integer, Real (either "F" type or "E" type), Complex, Double Precision, Alphabetic (BCD or HOLLERITH), and Octal. Optional exits are provided allowing the user to gain control if an error in the data cards or an end-of-file on the input tape is encountered.

Restrictions

This subroutine can be used only on the CDC 3600/3800 under the SCOPE/SCAMS Operating System. The size of the numbers and the accuracy retained on floating point numbers are limited only by the size of the word and the floating point/double precision hardware associated with the CDC 3600/3800.

Method

Standard double precision conversion techniques are employed throughout. Where a single precision value is desired, only the single precision result is kept, and in the case of the floating point numbers, the most significant portion is rounded before being stored. Error checks are liberally distributed throughout the conversion code to insure that all ill-formed data cards are detected rather than improperly converted.

Usage

1. Calling Sequence

CALL RDATA (ARG₁, ARG₂, ..., ARG_n)

Where ARG_1 , ARG_2 , ..., ARG_n are variables or names of arrays into which data is to be entered. The name READ DATA may be substituted for RDATA in the above sequence.

2. Data Set

A Data Set is a card or a group of cards which will be read with one call of the RDATA subroutine. A Data Card is usually terminated after the last column (column 72) has been scanned but may be terminated prior to this by placing a slash (0-1) in the column where termination is desired. All punches to the right of the slash will be ignored, and the scan will continue with the first column of the next data card. A Data Set is terminated when the scan encounters a dollar sign (11-3-8); the rest of the data card is ignored and control is returned to the first executable statement after the "CALL RDATA"

3. Data Fields

A Data Field is a continuous set of columns on a data card which causes one value to be entered into the calling program. A Data Field starts in column 1 of the data card or in the first column following the comma which has terminated the previous Data Field and is terminated by a comma, slash, dollar sign or the end of the data card (column 72). A Data Field cannot be split between two data cards and may assume one of the following forms:

1.	MC(S) = N,
2.	MC = N,
3.	(S) = N,
4.	(S) = N, N, N, N, N
5.	,

where M specifies the Mode of the variable or array into which the data is to be entered as follows:

Integer

E or F Real (Floating Point)

C · Complex

Double Precision

is an integer indicating into which variable in the argument list that data is to be entered (i.e., a "l" would indicate the variable which corresponds to ARG₁ a "2" to ARG₂, etc.)

is a positive non zero linear subscript indicating the element of the array associated with it. This subscript will be automatically doubled internally for complex and double precision numbers so that the linear subscript notation will agree with that used by FORTRAN 63.

N

Ι

D

C

S

is a numeric field, as described under Section 4.

A Data set must start with a Data Field of form (1) or (2) (see above). If form (2) is used for arrays, S will auto-• matically be assumed to be 1. Once an array (MC) has been defined, subsequent fields of form (4) will cause the value of the fields to be entered into consecutive elements of the array defined. An empty field (two commas, punched in consecutive columns or separated by blank columns) will cause the corresponding array element to be left at its previous value (i.e., it will be skipped). The linear subscript may be redefined at any time by using form (3) without renaming the mode and argument count. As indicated above, all data fields should be separated by commas. .There should not be a comma after the last data field on the card, however, because the end of a card acts as an implied comma and an additional comma would produce an empty field between it and the end of the card.

4. Numeric Fields

a. Decimal Fields

A decimal field has two components, the second of which is optional:

- 1. <u>The Principal Part</u> a decimal number with or without a decimal point. The decimal point, if any, may appear at the beginning of, end of, or within the principal part. If omitted it is assumed to be located at the right-hand end of the principal part.
- 2. The Exponent Part consists of the letter E or D followed by a signed or unsigned decimal integer. The Exponent part must follow the Principal Part. (Note: the "D" and "E" are completely interchangeable in this case.)

b. Octal Fields

An octal field consists of a string of not more than 16 (or 32 for double precision variables) octal digits (0 through 7) with or without a sign and followed by the letter \emptyset . A positive decimal integer N placed after the \emptyset will cause N zeros to be appended to the right of a positive octal number. The effect of a minus sign is to ones complement the entire word after the zeros are appended. For instance, -17 \emptyset 10 would appear as

7777607777777777

while 17010 would appear as

0000170000000000

The number $-6\emptyset15$ would appear as

1777777777777777777

whereas 6015 becomes

60000000000000000000

For double precision variables the minus sign will cause both the high and low order parts of the number to be complemented so that -101015 would produce the two words

7777777777777767

6777777777777777777

The high order part of the octal number is placed in the most significant portion of the double precision variable locations.

c. Alphabetic Fields

Alphabetic information may be read into Real or Complex variables (not Integer or Double Precision) through the use of an Alphabetic Field which may take on one of the following forms:

nHxxx...xxx,

2. Htxxx...xxxt,

Form (1) is recognized by the presence of a count (n) preceding the "H". In this case the n characters (here blanks are treated as legitimate alphabetic characters) following the "H" are taken as a hollerith string. Form (2) is recognized by the lack of a count (or a zero count) in front of the "H". In this case the character punched in the first column after the "H" is taken as a termination character (t) and all characters <u>following</u> the hollerith string.

Any legal hollerith character can be used as a termination character except, of course, the termination character cannot appear in the hollerith string.

Hollerith strings are broken down into eight characters per word and stored in ascending elements of the associated array. If the last word is not full, the characters are left adjusted and trailing blanks are added on the right. Alphabetic fields may be continued from card to card, column 1 being considered adjacent to column 72 of the preceding card. This is the only exception to the rule that fields cannot be split between cards. Alphabetic fields, like all other fields, should always be followed by a comma, slash, dollar sign, or end of card.

5. Special Features

To facilitate keypunching, the asterisk (11-4-8) may be used to denote subscription. That is MC*S = ... is equivalent to MC(S) = ..., is equivalent to (S)=....

The letter "K" may be used in place of the letter " \emptyset " in Octal fields to eliminate the confusion caused by the similarity between the letter " \emptyset " and the digit "0".

6. Alternate Exits

Normally, the RDATA subroutine, upon detecting an end-of-file on the input tape, will bring out the comment, "**ALL DATA PROCESSED**," and terminate execution through the subroutine EXIT. This action may be modified by the following sequence in the calling program:

ASSIGN i to n

CALL SETEOF (n)

where i is a statement number and n is a non-subscripted integer variable. After this sequence has been executed, an end-of-file on the input tape will cause control to be passed to statement number i without printing the comment. In addition, the input tape will be back-spaced so that subsequent entries to this (or any other input) routine will again cause an end-of-file condition. The sequence

CALL SETEOF (0)

will cause the end-of-file action to be reset to its normal state.

When a conversion error (illegal character, overflow, etc.) is detected, the normal procedure is to print out the bad card along with a comment describing the error condition, and then terminate execution through the subroutine Q8QERROR. This action may be modified by the following sequences in the calling program:

ASSIGN i to n

CALL SETERR (n)

After this sequence has been executed, an error will still cause the comments to be printed, but control will be passed to statement 1 rather than Q8QERROR. The sequence

CALL SETERR (0)

will cause the error action to be reset to its normal state.

7. Alternate Input Unit

Normally, logical unit sixty is used to input data cards. This condition may be modified by the following sequence,

CALL SET UNIT (n)

This call will cause data to be read from logical unit n until the input unit is re-designated by another SET UNIT call.

8. Example

Program:

COMPLEX CX1

DOUBLE PRECISION TERM

DIMENSION X(50), FMT(24), Y(50)

100 CALL RDATA (N, X, Y, CX1, TERM, FMT, ALPHA)

WRITE (6, FMT)

Data Cards:

*** *** *** *** *** ***

F6 = H*(16H1EXAMPLE PROGRAM)*

• II = 3 / NUMBER OF DATA POINTS FOR THIS CASE

E2 = 17.96347,,1.732E10, C4 = 1,2, E3 = -1.414, D5 =

3.14159265358979328

E3(5) = 1E-6, 1E-7,, 1E-9, (20) = 1E-21 \$

This program in conjunction with this data set will cause the following to be true:

FMT (1) = (16H1E FMT (2) = XAMPLE (alphabetic information) FMT (3) = PROGR FMT (4) = AM) N = 3 (integer) $X(1) = 0.17963470 \ge 02$

X(3)	(real) = 0.17320000 E 11
CX1	= 0.10000000 E 01, 0.20000000 E 01 (complex)
TERM	= 0.31415926535897932 D 01 (double precision)
Y(1) ·	=-0.14140000 E 01
Y(5)	= 0.10000000 E -05
Y(6)	= 0.10000000 E -06 (real)
Y(8)	= 0.10000000 E -08
Y(20)	= 0.10000000 E -20

All other variables and array positions will remain as they were before RDATA was called.