APPLICATION OF AN ITERATIVE GUIDANCE MODE TO A LUNAR LANDING

by Helmut J. Horn
George C. Marshall Space Flight Center Huntsville, Ala.

APPLICATION OF AN ITERATIVE GUIDANCE MODE TO A LUNAR LANDING

By Helmut J. Horn
George C. Marshall Space Flight Center Huntsville, Ala.

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION. 1
'COMPARISON OF VARIOUS GUIDANCE MODES 2
Delta Minimum Principle. 2
Path Adaptive Guidance Mode 2
Iterative Guidance Mode 3
DERIVATION OF EQUATIONS 3
Optimization with Calculus of Variation 3
Graphical Solution if End Position is Not Specified. 4
Approximate Solution, if One Coordinate of the End Point is Specified 7
Both End Point Coordinates Specified. 7
A LUNAR LANDING SCHEME 8
Mission and Ground Rules 8
The Guidance Equation 8
First Check Case: Direct Landing for Circular Orbit. 10
Second Check Case: Landing from a Hohmann Transfer Ellipse 13
CONCLUSIONS 15
REFERENCES 16

LIST OF ILLUSTRATIONS

Figure
Page
Title

1. Optimization for Free Choice of End Location 5
2. Lunar Flight Geometry 9
3. Flow Diagram 10
4. Typical Trajectories. 14
LIST OF TABLES
Table Title Page
5. Error Summary for Direct Landing from Parking Orbit 11
6. Descent from Nominal Parking Orbit (Case I) 11
7. Descent from Disturbed Parking Orbit (Case II) 12
8. Descent from Disturbed Parking Orbit (Case III) 12
9. Error Summary for Landing from Hohmann Ellipse 13
10. Descent from Nominal Hohmann Ellipse (Case I) 13
11. Descent from Disturbed Hohmann Ellipse (Case II) 14
12. Descent from Disturbed Hohmann Ellipse, Grazing Surface (Case III) 15

DE FINITION OF SYMBOLS

t
0 path tangent

Subscript
$1: v_{i} \quad$ initial or instantaneous
$\mathrm{g}: \mathrm{v}_{\mathrm{g}}$
$\mathrm{T}: \mathrm{v}_{\mathrm{T}}$
$\mathrm{L}: \mathrm{g}_{\mathrm{L}}$
time
time at target
time to complete consumption
value to be extremized
angle of rotation of ξ against x
thrust angle
path tangent
central angle to point of origin
thrust
mass and flow rate
constant of gravity
coefficients of the steering equation
acceleration
velocity
caused by gravity
total or final
lunar
horizontal and vertical coordinates and velocity components
rotated coordinates and velocity components

Superscript
$\sim: \tilde{\varphi}$
*: $\mathrm{F} *$

Definition
preliminary value for restricted case previous value

APPLICATION OF AN ITERATIVE GUIDANCE MODE
 TO A LUNAR LANDING*

SUMMARY

The purpose of a guidance system is to direct a vehicle from a given set of initial conditions to a predetermined set of final conditions with a minimum expenditure of propellants. Optimization of trajectories for minimum propellant consumption can be achieved with use of the calculus of variation. This method requires a large volume of numerical computation, making a real-time solution on board the vehicle impractical.

For highly simplified problems, e.g., for a homogeneous gravitation field, closed form solutions are available. These solutions provide an approximate answer for a real case. If applied repetitively, they can be used as steering equations. These approximations become stepwise better and better, and the end conditions should be reached with any desired degree of accuracy (disregarding instrument errors).

Application of this "Iterative Guidance Mode" to a lunar landing confirms this expectation, and calculated propellant losses are negligible. Real-time computation is possible with a small, medium speed computer (RPC 4000). This proves the feasibility of the "Iterative Guidance Mode" for on-board computation. Used for trajectory optimization, substantial savings in computer time are possible.

INTRODUCTION

The task of a guidance system generally is to direct a vehicle from a given instantaneous state to a prescribed final state. This study will describe a special system designed to handle large disturbances with a minimum energy expenditure. This is done by calculating a new optimum trajectory from any instantaneous state to the end point. By using analytical solutions of simplified problems as iteratively improving approximate solutions for the real problem, computation effort can be reduced to such an extent that real-time calculation of the optimum trajectories with on-board components becomes possible.

[^0]Application of this scheme to a lunar landing verifies its accuracy and usefulness numerically.

Special acknowledgement is given by the author to various members of the Dynamics Analysis Branch, especially Mr. Judson J. Hart, Mrs. Doris C. Chandler, and Mr. Daniel T. Martin, for the ir contributions in the preparation of this paper.

COMPARISON OF VARIOUS GUIDANCE MODES

The Delta Minimum Principle

One of the classical guidance modes uses a precalculated standard trajectory as a reference. Deviations from this reference caused by external disturbances, as well as inaccurate performance, tolerances, misalignments, etc., are sensed, and the vehicle is returned to the reference.

The term "trajectory," just like the terms "state," "condition," or "point," as used before, does not only define the geometric shape, but may include any other state variables which may be of significance, e.g., velocity vector or components, time, or instantaneous mass.

The method of keeping deviations from a reference small was, under the name "Delta Minimum Principle," used for the Juno launch vehicles which carried the Explorer satellites. Its main advantage is simplicity of the computing operations, since higher order terms of the steering equation can be neglected.

Deviations from the reference can usually be kept sufficiently small if the guidance system is continuously active and if the disturbances at no point exceed the system's capability.

The Path-Adaptive Guidance Mode
If the guided phase of the trajectory is preceded by an extended unguided interval, e.g., landing on the moon (direct or through orbit) after about three days of unpowered transit, or if for other reasons large deviations have occurred, it may become very uneconomical or even impossible to return to the standard trajectory. In such a case, it is preferable to compute a new trajectory from the actual conditions to the prescribed final state. Like the original standard trajectory, this secondary reference has to be optimized, e.g., by calculus of variation. The next logical step is to abandon the concept of a reference trajectory completely and to calculate at each instance the thrust level and direction that lead in optimum fashion to the desired end condition. This approach, called the "Path-Adaptive Guidance Mode" was pointed out by Dr. R. Hoelker and his co-workers $[1,2] *$ for the guidance of space vehicles like the Saturn.

[^1]The considerable computation effort spent in the optimization of even a single reference trajectory makes it impossible to do all the calculations in real time on board. Therefore, a large family of trajectories is being precalculated and evaluated before the flight, and the steering equation as a function of several variables derived and stored in the on-board guidance computer. Another possible solution for an on-board computation will be given below.

The Iterative Guidance Mode

Analytical solutions for optimum trajectory equations are possible for certain simplified cases. These analytical solutions are also approximate solutions for the general, i.e., not simplified, case. As the vehicle proceeds toward the target, the solution of the trajectory equations is repeated over and over. If the simplifications are chosen so that they converge toward the real conditions as the end point is approached, each recalculation of the trajectory will not only correct errors caused by external disturbances, but will also step-wise reduce those resulting from the original simplifications.

This iterative mode was applied to a (calculated) lunar landing problem and found to give solutions very close to a time optimum, even for conside rable initial errors.

In the derivation of the equations, graphical methods were used extensively. The resulting case of understanding helped considerably toward the formulation of the problem and the proper choice of simplifications.

DERIVATION OF THE EQUATIONS

Optimization with Calculus of Variation
As mentioned at the beginning, the terminal state of the vehicle is defined not only by its position but also by the velocity vector, time of arrival, mass (respectively propellant consumption), etc. Some of these values are prescribed by the mission, e.g., height and velocity vector in the case of an ascent to orbit. All but one of the remaining variables (or degrees of freedom) are then chosen in such a way that the remaining one, usually the final mass or the final velocity, becomes an extremal.

One of the two control variables available to shape the trajectory, the thrust level, may for the time being be considered as constant, i. e., determined by the power of a selected engine.

Making some additional simplifying assumptions, a homogeneous gravitational field, vacuum conditions, and constant specific impulse, Fried [3] and Lawdon [4] show an analytical solution for the remaining independent variable, the thrust direction.

$$
\begin{equation*}
\tan \varphi=\frac{\partial R / \partial \dot{y}_{T}+(T-t) \partial R / \partial y_{T}}{\partial R / \partial \dot{x}_{T}+(T-t) \partial R / \partial x_{T}}=\frac{a+b t}{c+d t} \tag{1}
\end{equation*}
$$

In an important special case, the injection into a circular orbit, the range over ground to the injection point x_{T} is not necessarily specified. To have maximum mass, the partial derivative becomes

$$
\begin{equation*}
\partial \mathrm{R} / \partial \mathrm{x}_{\mathrm{T}}=0 \tag{2}
\end{equation*}
$$

Subsequently, the steering equation takes the form

$$
\begin{equation*}
\tan \varphi=\frac{\partial \mathrm{R} / \partial \dot{\mathrm{y}}_{\mathrm{T}}+(\mathrm{T}-\mathrm{t}) \partial \mathrm{R} / \partial \mathrm{y}_{\mathrm{T}}}{\partial \mathrm{R} / \partial \dot{\mathrm{x}}_{\mathrm{T}}}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime} \mathrm{t} \tag{3}
\end{equation*}
$$

The same equation is valid if any straight line is prescribed as locus for the terminal point. The x, y coordinate system has then to be replaced by a rotated ξ, η system, the ξ axis of which is parallel to the straight line, and the thrust angle φ is measured against the ξ axis.

The end conditions of a trajectory, following steering equation (3), were calculated in analytical form by Ehlers [6]. No such solution for the inverted problem, the computation of the coefficients a^{\prime} and b^{\prime} that lead to a given end condition, seems to be available. Approximate solutions, e.g., by serial development and truncations, are possible. However, geometric relations can be exploited to derive another solution, which will be pursued in this report.

Graphical Solution if End Position is not Specified

Some understanding of the ideas that lead to the formulation of the iterative guidance mode will contribute to its general usefulness and its adaptation to various missions. Therefore, the derivation of equations, and particularly the use of graphical methods, is presented in considerable detail for some typical applications.

If the location of the end point is of no concern, Figure 1 allows a quick derivation of the equations. The inertial velocity, v_{i} is shown for clarity as the chain of arrou connecting point P_{3} to $\mathrm{P}_{4}^{\prime}, \mathrm{P}_{4}^{\prime \prime}$, or $\mathrm{P}_{4}^{\prime \prime \prime}$, respectively, where

$$
\begin{equation*}
\vec{v}_{\mathrm{i}}=\sum \overrightarrow{\mathrm{F}} / \mathrm{m} \Delta \mathrm{t} \tag{4}
\end{equation*}
$$

FIGURE 1. OPTIMIZATION FOR FREE CHOICE OF END LOCATION
instead of the true integral form. It is obvious that the distance $P_{3} P_{1}{ }^{\prime \prime}=\left|v_{i}\right|$ is largest if the "chain" is straight. This means, however, that the thrust angle 0 is constant. With $\mathrm{v}_{1}=\mathrm{P}_{1} \mathrm{P}_{2}$ representing the initial velocity and $\mathrm{v}_{\mathrm{g}}=\mathrm{P}_{2} \mathrm{P}_{3}$ representing the gravitational contribution, the locus for the total velocity vector v_{T} is a circle with P_{3}, as center and v_{i} as radius. Prescribing the direction of v_{T} provides the necessary secone condition for the end point $P_{4}^{\prime \prime}$ of v_{T} and v_{i}. If the velocity direction is free, the requirement for maximum velocity will place the end point to $P_{4}^{\prime \prime}{ }^{\prime \prime}$.

From the well known rocket equation, we determine

$$
\begin{align*}
\mathrm{v}_{\mathrm{i}}=\int \frac{\mathrm{F}}{\mathrm{~m}} \mathrm{dt} & =\mathrm{c} * \int \frac{\dot{\mathrm{~m}}}{\mathrm{~m}_{1}+\dot{\mathrm{m} t}} \mathrm{dt} \tag{5a}\\
& =\mathrm{c} * \ln \frac{\mathrm{~m}_{1}}{\mathrm{~m}_{1}+\dot{\mathrm{m} t}} \tag{5b}\\
& =\mathrm{c} * \ln \frac{\tau}{\tau-\mathrm{t}} \tag{5c}
\end{align*}
$$

where the auxiliary variable

$$
\begin{equation*}
\tau=-\frac{m_{1}}{\dot{m}} \tag{5d}
\end{equation*}
$$

gives the time at which the vehicle would have completely burned.
From Figure 1b, Equation (5c) and

$$
\begin{equation*}
\mathrm{v}_{\mathrm{g}}=\dot{\mathrm{y}}_{\mathrm{g}}=\mathrm{gT} \tag{6}
\end{equation*}
$$

it follows that

$$
\begin{align*}
& \dot{\mathrm{x}}_{\mathrm{i}}=\mathrm{c} * \ln \frac{\tau}{\tau-\mathrm{T}} \cos \varphi=\mathrm{v}_{\mathrm{T}} \cos \theta_{\mathrm{T}}-\dot{\mathrm{x}}_{1} \tag{7}\\
& \dot{\mathrm{y}}_{\mathrm{i}}=\mathrm{c} * \ln \frac{\tau}{\tau-\mathrm{T}} \sin \varphi=\mathrm{v}_{\mathrm{T}} \sin \theta_{\mathrm{T}}-\dot{\mathrm{y}}_{\mathrm{i}}+\mathrm{gT} . \tag{8}
\end{align*}
$$

These two equations can be solved simultaneously for either T and 0 or for v_{T} and 0 , as the case may require.

Approximate Solution if One Coordinate of the End Point is Specified
The additional constraint in the end condition requires an additional degree of freedom added to the steering equation, which can be provided by using the form of Equation (3), somewhat rewritten:

$$
\begin{equation*}
\varphi=\tilde{\varphi}-\left(\mathrm{K}_{1}-\mathrm{K}_{2} \mathrm{t}\right) \tag{9}
\end{equation*}
$$

where $\tilde{\varphi}$ is the constant thrust angle that satisfies the velocity conditions. Equations (7) and (8), and K_{1} and K_{2} will be chosen so that the position constraint y_{T} is satisfied without disturbing the end velocity condition \dot{y}_{T}. For small values of ($K_{1}-K_{2}$), the equations of motion can be approximated.

$$
\begin{align*}
& \ddot{\mathrm{y}}_{\mathrm{i}}=\mathrm{F} / \mathrm{m} \sin \left[\tilde{\varphi}-\left(\mathrm{K}_{1}-\mathrm{K}_{2} \mathrm{t}\right)\right]=\frac{\mathrm{c}^{*}}{\tau-\mathrm{t}} \sin \left[\tilde{\varphi}-\left(\mathrm{K}_{1}-\mathrm{K}_{2} \mathrm{t}\right)\right] \tag{10a}\\
& \ddot{\mathrm{y}}_{\mathrm{i}}=\ddot{\tilde{y}}_{\mathrm{i}}-\frac{\mathrm{c}^{*}}{\tau-\mathrm{t}}\left(\mathrm{~K}_{1}-\mathrm{K}_{2} \mathrm{t}\right) \cos \tilde{\varphi} \tag{10b}\\
& \dot{\mathrm{y}}_{\mathrm{i}}=\dot{\tilde{y}}_{\mathrm{i}}-\mathrm{c}^{*} \cos \tilde{\varphi}\left[+\mathrm{K}_{1} \ln \frac{\tau}{\tau-\mathrm{t}}-\mathrm{K}_{2}\left(\tau \ln \frac{\tau}{\tau-\mathrm{t}}-\mathrm{t}\right)\right] \tag{11a}\\
& \dot{\mathrm{y}}_{\mathrm{i}}(\mathrm{~T})-\dot{\tilde{y}}_{\mathrm{i}}(\mathrm{~T})=\mathrm{c}^{*} \cos \tilde{\varphi}\left[-\mathrm{K}_{1} \ln \frac{\tau}{\tau-\mathrm{T}}+\mathrm{K}_{2}\left(\tau \ln \frac{\tau}{\tau-\mathrm{T}}-\mathrm{T}\right)\right]=0 \tag{11b}\\
& \mathrm{y}_{\mathbf{i}}=\tilde{\mathrm{y}}_{\mathbf{i}}-\mathrm{c}^{*} \cos \tilde{\varphi}\left[\mathrm{~K}_{1}\left[\mathrm{t}-(\tau-\mathrm{t}) \ln \frac{\tau}{\tau-\mathrm{t}}\right]\right. \\
& \left.\quad+\mathrm{K}_{2}\left\{\frac{\mathrm{t}^{2}}{2}-\tau\left[\mathrm{t}-(\tau-\mathrm{t}) \ln \frac{\tau}{\tau-\mathrm{t}}\right]\right\}\right] \tag{12a}\\
& \mathrm{y}_{\mathrm{T}}(\mathrm{~T})=\mathrm{y}_{1}+\dot{\mathrm{y}}_{1} \mathrm{~T}-\frac{1}{2} \mathrm{~g} \mathrm{~T}^{2}+\mathrm{y}_{\mathrm{i}}(\mathrm{~T})=\mathrm{y}_{\mathrm{T}}(\mathrm{~T})_{\text {Nom }} . \tag{12b}
\end{align*}
$$

Equations (11) and (12) can be solved simultaneously. If necessary, the horizontal velocity component can be corrected by recomputing the flight time.

Both End Point Coordinates Specified

As Equation (1) shows, an additional degree of freedom, in the form of the constant c, is available to allow one more constraint. (The constants c and d are not free since by division either can be made unity.) In practice, however, any shifting of the end point in the "average" flight direction by changing the thrust angle is rather
ineffective; this should rather be accomplished by adjusting the thrust level either by continuous throttling or, stepwise, by turning all or part of the engines on and off.

For this study, it will be assumed that the constant thrust level which would satisfy the end conditions will be recomputed at adequate intervals and the engine adjusted accordingly.

A LUNAR LANDING SCHEME

Mission and Ground Rules

Only a rather general idea, subject to rather restrictive simplifications, has been presented so far. The easiest way to check its practical usefulness is to apply it to a specific mission, e. g., the automatic landing of a space vehicle on the moon. We guide the vehicle from a lunar orbit, either a nominally circular one or a Hohmann transfer ellipse, to a predetermined point on the surface, and then compare the trajectories for nominal and strongly disturbed initial conditions. The system can then be judged by the accuracy with which the landing point and zero velocity are reached, the amount of fuel used above that for a true optimum path, and the magnitude of the maneuvers required, especially engine throttling.

Since the information available to determine the instantaneous state probably will be limited, we will restrict ourselves to the use of D, the line of sight distance to the landing site; $\dot{\mathrm{D}}$, its rate of change; ϵ, angle between the line of sight direction to landing site and the local horizontal; $\dot{\epsilon}$, its rate of change; and a_{i}, the inertial acceleration.

While the amount of information is considered very carefully, the means of obtaining it (radio, optical, inertial, etc.) are beyond the scope of this study. Instrumentation errors are not considered either, but the trend of errors to become smaller as the measured value decreases will hopefully keep them within reason.

The Guidance Equation

The flight geometry shown in Figure 2 shows the primary xy coordinate system, pointing in the local horizontal and vertical at the landing site. The $\xi-\eta$ system is formed by rotating the $x-y$ system through the variable angle ϵ with the negative ξ-axis pointing toward the vehicle.

The instantaneous coordinates of the vehicle are x_{1} (shown to be negative), y_{1}, ξ_{1} (negative), and $\eta_{1}=0$. Since the landing site is at the point of origin, all nominal values at the terminal point are zero. As the gravitation changes in direction and magnitude, mean values were used for both:

FIGURE 2. LUNAR FLIGHT GEOMETRY

$$
\begin{align*}
& \phi^{*}=\frac{1}{2} \phi_{1}=\arctan \frac{D_{1} \cos \epsilon_{1}}{r_{L}+D \sin \epsilon_{1}} \tag{13}\\
& g^{*}=\frac{1}{2}\left(g_{L_{1}}+g_{L}\right) \approx g_{L}\left[1-\frac{y_{1}}{r_{L}}-\frac{1}{2}\left(\frac{D \cos \epsilon}{r_{L}}\right)^{2}\right] . \tag{14}
\end{align*}
$$

An attempt was first made to calculate the thrust level from the condition that $\dot{\xi}$ and ξ must simultaneously become zero, but it was found more simple and accurate to use the precalculated value F^{*} for a nominal trajectory as initial value, calculate the ξ^{*} that would result from its use, and correct the thrust level to

$$
\begin{equation*}
\mathrm{F}_{1}=\mathrm{F} * \frac{\xi^{*}}{-\xi_{1}} . \tag{15}
\end{equation*}
$$

For each integration step, the thrust from the previous step is used as first approximation. The other steps shown in the flow diagram (Figure 3) are selfexplanatory. A detailed derivation of the equations is given in a NASA report [5].

FIGURE 3. FLOW DLAGRAM

The interval for recomputing the guidance equation was arbitrarily set at 10 seconds. There are indications that a considerably longer step would have been permissible.

First Check Case: Direct Landing from Circular Orbit
A circular parking orbit with a nominal height of 100 km is selected as initial condition for the landing. The vehicle has an initial mass of $30,000 \mathrm{~kg}$, a nominal thrust of 9000 kp , specific impulse of 420 sec , and in the nominal case a landed mass of $18,572 \mathrm{~kg}$.

Table I shows the effect of probable error sources on the accuracy of the guidance. The perturbations consist of distortions of the parking orbit into an ellipse, variations in the orientation of the ellipse, and errors in ignition time.

TABLE 1. ERROR SUMMARY FOR DIRECT LANDING FROM PARKING ORBIT

	Peri- selenum km	Apo- selenum km	Angle between Land-Site deg	Ignition Time Error sec	Thrust Variation max. kp	x m	Landing Errors y m	$\dot{\mathrm{y}}$ m / s
I	100	100	0	0	± 320	-.12	-.09	-.02
II	100	150	180	0	± 850	-.07	-.05	-.01
III	50	100	0	0	± 60	-.10	-.12	-.02
IV	100	150	0	0	± 310	-.07	-.05	-.01
V	50	100	180	0	± 340	-.09	-.06	-.01
VI	75	125	90	0	± 320	-.12	-.07	-.02
VII	75	125	270	0	± 320	-.09	-.07	-.02
VII	100	100	0	+10	± 310	-.10	-.07	-.02
IX	100	100	0	-10	± 320	-.12	-.01	-.02

Table 1 shows that in all cases the errors at landing are negligible. The payload loss, compared to an optimum descent from the initial conditions, was within the computing accuracy of about 10 kg , and therefore is not shown. The thrust level variations shown are the maximum deviations occurring at any time. They are always within ± 10 percent of the nominal value. Three typical trajectories are shown in Tables 2, 3, and 4.

TABLE 2. DESCENT FROM NOMINAL PARKING ORBIT (CASE I)

t sec	X km	y km	φ deg	v m / s	F kp	h km
60	-448.9	44.3	227.9	1695.3	9005	100.0
100	-387.0	57.5	217.7	1627.3	8912	98
140	-328.5	65.4	208.1	1548.4	8844	95.1
180	-273.8	68.7	199.0	1459.5	8796	89.4
220	-223.5	68.1	190.4	1361.5	8762	81.8
260	-178.0	64.1	182.2	1255.1	8737	72.9
300	-137.5	57.6	174.2	1140.6	8720	62.8
340	-102.3	49.2	166.6	1018.4	8708	52.1
380	-72.5	39.6	159.2	888.6	8701	41.1
420	-48.1	29.7	151.9	751.3	8696	30.4
460	-29.0	20.1	144.8	606.3	8694	20.4
500	-14.9	11.6	137.8	453.5	8693	11.7
540	-5.7	5.0	130.9	292.9	8693	5.0
580	-0.9	0.9	124.0	124.3	8693	0.9
608.3	0.0	0.0	119.3	0.0	8693	0.0

TABLE 3. DESCENT FROM DISTURBED PARKING ORBIT (CASE II)

t sec	X km	y km	φ deg	v m / s	F kp	h km
108.8	-481.0	86.8	246.3	1656.8	9037	149.2
148.8	-420.0	100.2	232.2	1630.0	8773	147.6
188.8	-361.4	107.7	219.6	1585.3	8586	142.7
228.8	-306.0	109.9	208.2	1525.1	8467	135.1
268.8	-254.5	107.6	197.8	1451.9	8386	125.1
308.8	-207.4	101.6	188.1	1367.5	8331	113.3
348.8	-165.0	92.6	179.0	1272.9	8291	100.0
388.8	-127.5	81.3	170.4	1169.0	8264	85.8
428.8	-95.2	68.6	162.1	1056.2	8244	71.1
468.8	-67.9	55.1	154.2	935.0	8231	56.4
508.8	-45.7	41.7	146.5	805.4	8222	42.3
548.8	-28.3	29.1	139.0	667.4	8216	29.3
588.8	-15.5	17.9	131.7	521.0	8214	18.0
628.8	-6.8	8.9	124.6	366.1	8213	8.9
668.8	-1.8	2.7	117.5	202.9	8213	2.7
715.9	0	0	109.4	0	8213	0

TABLE 4. DESCENT FROM DISTURBED PARKING ORBIT (CASE III)

t sec	X km	y km	φ deg	v m / s	F kp	h km
113.6	-432.7	-2.4	207.3	1707.8	8999	50.7
153.6	-369.9	11.3	209.5	1607.4	8983	50.0
193.6	-311.1	20.8	194.7	1501.3	8970	48.1
233.6	-256.7	26.7	188.6	1389.6	8961	45.3
273.6	-206.9	29.4	182.7	1272.4	8954	41.4
313.6	-162.2	29.3	176.8	1149.6	8949	36.7
353.6	-122.7	27.1	171.1	1021.3	8946	31.3
393.6	-88.6	23.2	165.4	887.3	8944	25.4
433.6	-60.0	18.3	159.7	747.6	8942	19.3
473.6	-37.0	13.0	154.1	601.8	8942	13.4
513.6	-19.6	7.8	148.6	449.8	8942	7.9
553.6	-7.8	3.5	143.0	291.3	8942	3.5
593.6	-1.4	.7	137.5	125.9	8943	.7
622.9	0	0	133.5	0	8943	0

A nominal periselenum of 20 km as standard ignition point is chosen. It is varied similarly as in First Check Case, except that the periselenum altitude is changed ± 100 percent (Table 5). The vehicle is the same as in Case I except that the thrust has a nominal value of $15,000 \mathrm{kp}$ and the landed mass is $19,522 \mathrm{~kg}$.

TABLE 5. ERROR SUMMARY FOR LANDING FROM HOHMANN ELLIPSE

Case	```Peri- selenum km```	$\begin{aligned} & \text { Apo- } \\ & \text { selenum } \\ & \text { km } \end{aligned}$	Angle fr. Periselenum to Land-Site deg	Time Error sec	Thrust Variation Max. kp	X m	Landing Errors y m	$\begin{aligned} & \mathrm{y} \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$
I	20	100	-8.5	0	± 30	-. 14	-. 28	-. 04
II	40	100	-8. 5	0	± 170	-. 29	-. 38	-. 07
III	0	100	-8. 5	0	± 10	-. 01	-. 05	-. 01
IV	20	100	-18.5	0	± 40	-. 15	-. 31	-. 05
V	20	100	+1.5	0	± 30	-. 14	-. 28	-. 04
VI	20	100	-8.5	+10	+1100	-. 17	-. 34	-. 05
					-30			
VII	20	100	-8. 5	-10	+30	-. 10	-. 21	-. 03
					-950			

Case III demonstrates rather dramatically the power of the system. The vehicle grazes the surface when power is applied. Still, it recovers and lands with perfect accuracy (Figure 4 and Table 8). In addition, Cases III and IV are equivalent to missing the time for the Hohmann kick by about ± 3 minutes. Tables 6,7 , and 8 show some more trajectory details.

TABLE 6. DESCENT FROM NOMINAL HOHMANN ELLIPSE (CASE I)

t sec	X km	y km	φ deg	v m / s	F kp	h km
54.3	-259.1	0.8	199.0	1702.9	15000	20.0
94.3	-196.0	8.3	192.1	1515.2	14987	19.3
134.3	-140.6	11.7	185.2	1314.4	14978	17.3
174.3	-93.7	11.6	181.5	1099.8	14973	14.1
214.3	-55.8	9.3	171.9	871.1	14970	10.2
254.3	-27.4	5.8	165.3	627.0	14968	6.0
294.3	-8.8	2.3	158.8	366.7	14968	2.3
314.3	-3.4	0.9	155.6	230.0	14968	0.9
346.5	-0.0	0.0	150.4	0.0	14968	0.0

FIGURE 4. TYPICAL TRAJECTORIES

TABLE 7. DESCENT FROM DISTURBED HOHMANN ELLIPSE (CASE II)

t sec	X km	y km	φ deg	v m / s	F kp	h km
54.2	-263.9	20.3	213.3	1698.0	15011	40.0
94.2	-201.0	27.0	202.4	1534.5	14947	38.4
134.2	-145.5	28.2	192.0	1351.5	14905	34.1
174.2	-98.1	25.0	181.2	1149.8	14879	27.7
214.2	-59.6	19.0	172.1	929.6	14865	20.0
254.2	-30.5	11.8	162.6	691.0	14859	12.1
294.2	-11.1	5.1	153.2	433.8	14857	5.1
334.2	-1.3	0.7	143.9	157.5	14857	0.7
355.8	-0.0	0.0	139.1	0.0	14857	0.0

TABLE 8. DESCENT FROM DISTURBED HOHMANN ELLIPSE, GRAZING SURFACE (CASE III)

t sec	X km	y km	φ deg	v m / s	F kp	h km
51.4	-259.1	-19.4	184.2	1696.5	15003	0.0
91.4	-195.6	-10.8	181.3	1498.0	15005	0.2
131.4	-140.1	-4.9	178.3	1289.8	12007	0.7
171.4	-93.0	-1.4	175.4	1070.6	15008	1.1
211.4	-54.9	0.3	172.5	839.3	15009	1.2
251.4	-26.4	0.7	169.6	594.3	15009	0.9
291.4	-8.0	0.4	166.6	333.9	15010	0.4
339.2	0.0	0.0	163.2	0	15010	0.0

CONC LUSIONS

No attempt is made to prove the validity of the iterative guidance scheme in a general way. However, when used for a specific application, a lunar landing, all requirements previously stated are satisfied. It handles disturbances beyond those expected in a real flight with a minimum of measurements. Payload loss is negligible, the landing accuracy does not deteriorate, and control requirements, especially thrust control, are acceptable.

At the same time, the computation effort is modest. Calculation time for the steering equations (including trajectory calculation) for one integration step is 10 seconds on a small, medium speed computer, the RCP 4000, i. e., in real time. Storage requirements of 1300 words are well within the capacity of these computers.

The important question of how to measure the required variables is beyond the topic of this report. Other questions that remain are (1) the extension to three dimensions, which should not pose any major difficulties, (2) some improvement of the computer program, and (3) an analysis of the effects of instrument errors.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama February 1965

1. Hoelker, R. F., "The Evolution of Guidance Theory and Trajectory Analysis Into a Single Scientific Discipline," prepared for presentation at the "Meeting of the Institute of Navigation," in Williamsburg, Va., June 1961. Marshall Space Flight Center, Huntsville, Alabama.
2. Miner, W. E., D. H. Schmieder, and N. J. Braud, "The Path-Adaptive Mode for Guiding Space Flight Vehicles," ARS Guidance, Control and Navigation Conference, Stanford, California, August 1961. Revised March 1962, Reprint from Progress in Astronautics and Rocketry, 1962 Academic Press, New York, New York.
3. Fried, B. D. , "On the Powered Flight Trajectory of an Earth Satellite," Jet Propulsion Laboratory, Vol. 27, June 1957, pp. 641-643.
4. Lawden, D. F., "Optimal Rocket Trajectories," Jet Propulsion, Vol. 27, December 1957, p. 1263.
5. Chandler, D. C., H. Horn, and D. T. Martin, "An Interative Guidance Scheme and Its Application to Lunar Landing," Marshall Space Flight Center report, MTP-AERO-63-11.
6. Ehlers, E. Edward, "Missile Trajectories with Linear Time Variation of the Sine or Tangent of the Thrust Angle," ARS Journal, Vol. 31, No. 5, May 1961, pp. 631-636.

[^0]: * Paper presented at Third European Space Flight Symposium and 15th Annual Meeting of the DGRR in Stuttgart, Germany, May 22-24, 1963.

[^1]: *Numbers in brackets indicate references at the end of the report.

