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APPLICATION OF AN ITERATIVE GUIDANCE MODE 

TO A LUNAR LANDING'' 

SUMMARY 

The purpose of a guidance system is to direct  a vehicle from a given set of initial 
conditions to a predetermined set of final conditions with a minimum expenditure of pro- 
pellants. Optimization of t ra jector ies  fo r  minimum propellant consumption can  be 
achieved with use of the calculus of variation. This method requires  a large volume of 
numerical  computation, making a real-t ime solution on board the vehicle impractical. 

For highly simplified problems,  e. g. , f o r  a homogeneous gravitation field, 
closed form solixtions are available. These solutions provide a n  approximate answer 
for  a real case. If applied repetitively, they can be used as s teer ing equations. These 
approximations become stepwise better and bet ter ,  and the end conditions should be 
reached with any des i red  degree of accuracy (disregarding instrument e r r o r s ) .  

Application of this  "Iterative Guidance Mode" to a lunar landing confirms thi's 
expectation, and calculated propellant losses  are negligible. Real-time computation is 
possible with a smal l ,  medium speed computer (RPC 4000). This proves the feasibility 
of the "Iterative Guidance Mode" f o r  on-board computation. Used f o r  t ra jectory optimi- 
zation, substantial savings in computer t ime are possible. 

INTRODUCTION 

The task of a guidance system generally is to direct  a vehicle from a given in- 
stantaneous state to a prescr ibed final state. This  study will descr ibe a special system 
designed to handle large disturbances with a minimum energy expenditure. This is done 
by calculating a new optimum trajectory from any instantaneous s ta te  to the end point. 
By using analytical solutions of simplified problems as iteratively improving approxi- 
mate  solutions fo r  the real problem, computation effort can be reduced to such a n  extent 
that real-t ime calculation of the optimum trajector ies  with on-board components be- 
comes possible. 

J. 

-,.Paper presented a t  Third European Space Flight Symposium and 15th Annual 
Meeting of the DGRR in Stuttgart ,  Germany, May 22-24, 1963. 



Application of this scheme to a lunar landing verifies i ts  accuracy and usefulness 
numerically. 

Special acknowledgement is given by the author to various members  of the 
Dynamics Analysis Branch, especially Mr. Judson J. H a r t ,  Mrs.  Doris  C. Chandler, 
and Mr. Daniel T. Martin, f o r  their  contributions in the preparation of this  paper. 

COMPARISON OF VARIOUS GUIDANCE MODES 

The Delta Minimum Principle 

One of the classical guidance modes uses  a precalculated standard t ra jectory as 
a reference. Deviations from this reference caused by external disturbances , as well 
as inaccurate performance , tolerances,  misalignments , etc. , are sensed,  and the 
vehicle is returned to the reference. 

The te rm Yrajectory,  just like the t e r m s  "state , I t  '!condition, I t  o r  7tpoint, I t  as 
used before, does not only define the geometric shape, but may include any other state 
variables which may be of significance, e. g. , velocity vector o r  components, t ime,  o r  
instantaneous mass.  

The method of keeping deviations from a reference small  was,  under the name 

Its main advantage is simplicity of the computing operations , since 
"Delta Minimum Principle ,"  used fo r  the Juno launch vehicles which ca r r i ed  the Ex- 
p lorer  satellites. 
higher o r d e r  t e r m s  of the s teer ing equation can be neglected. 

Deviations from the reference can usually be kept sufficiently smal l  if the 
guidance system is continuously active and if the disturbances at no point exceed the 
system's  capability. 

The Path-Adaptive Guidance Mode 

If the guided phase of the t ra jectory is preceded by an  extended unguided interval,  
e. g. , landing on the moon (d i rec t  o r  through orbit)  a f te r  about three days of unpowered 
t rans i t ,  o r  if f o r  other reasons large deviations have occurred,  it may become very un- 
economical o r  even impossible to re turn to the standard trajectory.  In such a case, it 
is preferable to compute a new trajectory from the actual conditions t o  the prescr ibed 
final state. Like the original standard t ra jectory,  this  secondary reference has  to be 
optimized, e. g. , by calculus of variation. The next logical step is to abandon the con- 
cept of a reference t ra jectory completely and to calculate a t  each instance the thrust  
level and direction that lead in optimum fashion to the desired end condition. This ap- 
proach, called the "Path-Adaptive Guidance Mode" w a s  pointed out by Dr. R.  Hoelker 
and his co-workers [I, 21:; for  the guidance of space vehicles like the Saturn. 
-9. "'Numbers in brackets indicate references at the end of the report. 
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The considerable computation effort spent in the optimization of even a single 
reference trajectory makes it impossible to do all  the calculations in real t ime on hoard. 
Therefore  , a large family of t ra jector ies  i s  being precalculated and evaluated before the 
flight, and the s teer ing equation as a function of several  variables derived and stored in 
the on-board guidance computer. Another possible solution for  an on-board coniputation 
will be given below. 

The Iterative Guidance Mode 

Analytical solutions f o r  optimum trajectory equations are possible for  cer ta in  
simplified cases. 
general ,  i. e. , not simplified, case. 
solution of the t ra jectory equations is repeated over and over. If the simplifications are 
chosen so that they converge toward the real conditions as the end point is  approached, 
each recalculation of the trajectory will not only cor rec t  e r r o r s  caused by external dis-  
turbances,  but will a lso step-wise reduce those resulting from the original simplifica- 
tions. 

These analytical solutions are slso approximate solutions for  the 
A s  the vehicle proceeds toward the ta rge t ,  the 

This  iterative mode w a s  applied to a (calculated) lunar landing problem and 
found to give solutions very  close to a t ime optimum, even for  considerable initial e r ro r s .  

In the derivation of the equations , graphical methods kvere used extensively. The 
resulting case  of understanding helped considerably toward the formulation of the prob- 
lem and the proper  choice of simplifications. 

DERIVATION OF THE EQUATIONS 

Optimization with Calculus of Variation 

A s  mentioned a t  the beginning, the terminal state of the vehicle is defined not 
only by i t s  position but a lso by the velocity vector ,  t ime of a r r iva l ,  m a s s  (respectively 
propellant consumption) , etc. Some of these values are prescr ibed by the mission, 
e. g. , height and velocity vector in the case  of a n  ascent to orbit. All but one of the 
remaining variables ( o r  degrees  of freedom) are then chosen in such a \\'ay that the re -  
maining one, usually the final m a s s  o r  the final velocity, becomes an  estremal .  

One of the two control variables available to shape the t ra jectory,  the thrust  
level, may fo r  the t ime being be considered as constant, i. e. , determined by the po\ver 
of a selected engine. 

Making some additional simplifying assumptions , a homogeneous gravitational 
field, vacuum conditions, and constant specific impulse, Fr ied [ 31 and Landon [ 41 
show an analytical solution for  the remaining independent variable , the thrust  direction. 

3 



In an important special case ,  the injection into a c i rcu lar  orbi t ,  the range over  ground 
to the injection paint xT is not necessarily specified. To have maximum mass ,  the 
partial derivative bec om e s 

aR/axT = 0 .  

Subsequentlx the steering equation takes the form 

i3R/ajiT + ( T  - t) BR/ByT 
= a' + b l t .  a R/ akT tan = 

The same equation is valid if any straight line is prescr ibed as locus fo r  the terminal 
point. The x ,  y coordinate system has then to be replaced by a rotated <, 77 system, 
the axis of which is parallel  to the straight l ine,  and the thrust  angle <p is measured 
against the < axis. 

The end conditions of a t ra jectory,  following s teer ing equation ( 3 )  , were calcu- 
lated in analytical form by Ehlers  [ 61. No such solution fo r  the inverted problem , the 
computation of the coefficients a! and b! that lead to  a given end condition, seems to  be 
available. Approximate solutions, e. g. , by ser ia l  development and truncations, a r e  
possible. However , geometric relations can be exploited to derive another solution, 
which will be pursued in this report. 

I 

Graphical Solution if End Position is not Specified 

Some understanding of the ideas that lead to the formulation of the i terative 

I guidance mode will contribute to  its general usefulness and i ts  adaptation to  various 
missions. Therefore , the derivation of equations, and particularly the use of graphical 
methods, is presented in considerable detail fo r  some typical applications. 

If the location of the end point is of no concern,  Figure i allows a quick deriva- 
tion of the equations. The inertial  velocity, vi is shown for  c lar i ty  as the chain of arrom 
connecting point P3 to  Pi, Pry or  Pi'' , respectively, where 

4 

v = F/m A t ,  i 
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(a) Vector Diagram 

I 

- -  

lo) Angular Relations 

FIGURE 1. OPTIMIZATION FOR FREE CHOICE OF END LOCATION 
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instead of the t rue  integral form. 
if the "chain" is straight. This means,  hoLvever, that the thrust  angle c3 is constant. 
With vi = PlP2 representing the initial velocity and vg  = P2 1': representing the ;i-a\.i- 
tational contribution, the locus for  the total velocity vector vrr is a circle  nit11 I > ?  a s  
center  and vi  as radius. Prescr ibing the direction of vVr provicles the necessnrj. st'conc 
condition fo r  the end point Pi' of VT and Vi. 
quirement for  maximum velocity will place the end point to p;". 

It is  obvious that the distance P3Pt" '  = / \ s i (  is lai*x:est 

If the velocity direction is free,  the re- 

From the wel l  known rocket equation, l ve determine 

ml 
mi + h t  

- c ::: - In 

T 
- c ::: - In - 7 - t  

where the auxiliary variable 

gives the t ime at which the vehicle would have completely burned. 

From Figure i b ,  Equation (5c )  and 

I vg = Yg = 0, 

( S b )  

( J 

it follows that 

~ 

T 
cos  cp = V T  cos O T  - >1 ( 7 )  i< = c::: In - 

i T - T  

These two equations can be solved simultaneously for  e i ther  T and p o r  for  vT and c?, 
as the case may require. 

I 6 



I Approximate Solution if One Coordinate of the End Point is Specified 

The additional constraint  in the end condition requires  an additional degree of 
freedom added to the s teer ing equation, which can be provided by using the form of 

N 

where cp is the constant thrust  angle that satisfies the velocity conditions. Equations ( 7 )  
and (8)  , and K, and K2 will be chosen s o  that the position constraint  yT is satisfied 
without disturbing the end velocity condition FT. For  small  values of (K ,  - K2t) , the 
equations of motion can be approximated. 

N 
.. .. - yi = yi - - (K,  - K2t) COS ~p 7 - t  

7 7 N N gi = ;li - c* cos  cp [+K~ In - - K2 ( 7  In - - t)] 7 - t  7 - t  

N 7- 7  ti(^) - $T) = c::: C O S  cp [- K, In - + K2 ( 7  In - - T)]=  0 7 - T  T - T  

7 - t  
N 

yi = yi - c* cos Ki[t  - ( 7  - t) In - 

Equations (11) and (12)  can be solved simultaneously. If necessary,  the hori- 
zontal velocity component can be corrected by recomputing the flight time. 

Both End Point Coordinates Specified 

A s  Equation ( I) shows, an  additional degree of freedom, in the form of the 
constant c ,  is available to  allow one more constraint. (The constants c and d a r e  not 
free since by division ei ther  can be made unity. ) In pract ice ,  however, any shifting 
of the end point in the ' faverageff  fligiit direction by changing the thrust  angle is ra ther  

7 



ineffective; this should ra ther  be accomplished by adjusting the thrust  level e i ther  by 
continuous throttling o r ,  stepwise, by turning all o r  par t  of the engines on and off. 

For this study, it will be assumed that the constant thrust  level which would 
satisfy the end conditions will be recomputed at adequate intervals and the engine ad- 
justed accordingly. 

A LUNAR LANDING SCHEME 

Mission and Ground Rules 

Only a ra ther  general idea, subject to ra ther  res t r ic t ive simplifications, has 
been presented so  far. The easiest  way to check its practical  usefulness is to  apply it 
to a specific mission, e. g. , the automatic landing of a space vehicle on the moon. We 
guide the vehicle from a lunar orbi t ,  e i ther  a nominally c i rcular  one o r  a Hohmann 
t ransfer  ell ipse,  to  a predetermined point on the surface,  and then compare the tra- 
jectories for  nominal and strongly disturbed initial conditions. 
judged by the accuracy with which the landing point and zero velocity a r e  reached, the 
amount of fuel used above that fo r  a t rue  optimum path, and the magnitude of the 
maneuvers required , especially engine throttling. 

The system can then be 

Since the information available to determine the instantaneous state probably 
will be limited, we will res t r ic t  ourselves to the use of D ,  the line of sight distance to 
the landing s i te ;  6, its rate  of change; E ,  angle between the line of sight direction to 
landing s i te  and the local horizontal; 2, its rate  of change; and ai, the inertial  accelera- 
tion. 

While the amount of information is considered very carefully, the means of ob- 
taining it ( rad io ,  optical, iner t ia l ,  etc. ) a r e  beyond the scope of this study. Instru- 
mentation e r r o r s  are not considered ei ther ,  but the trend of e r r o r s  to become smal le r  
a s  the measured value decreases  will hopefully keep them within reason. 

The Guidance Equation 

The flight geometry shown in Figure 2 shows the pr imary xy coordinate system, 
pointing in the local horizontal and vertical  at the landing site. The 5-77 system is 
formed by rotating the x-y system through the variable angle E with the negative 
[-axis pointing toward the vehicle. 

The instantaneous coordinates of the vehicle a r e  xi (shown to be negative) , yi ,  
5, (negative) , and vi = 0. 
values at the terminal point a r e  zero. A s  the gravitation changes in direction and mag- 
nitude, mean values were used for  both: 

Since the landing s i te  i s  a t  the point of origin,  a l l  nominal 
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FIGURE 2. LUNAR FLIGHT GEOMETRY 

D, C O S  €1 
GI = arc tan $2:' = 1 

2 rL + D sin 



An attempt was first made to calculate the thrust  level from the condition that i and ( 
must simultaneously become zero ,  but it was found more  simple and accurate  to use the 
precalculated value F': for  a nominal trajectory as initial value, calculate the (* that 
would result  from its use ,  and cor rec t  the thrust  level to 

COMF'UlE PRELIMINARY 
CONSTAM ATTITUDE AND 

FLIGHT TIME 

v, T 

For  each integration s tep,  the thrust  from the previous s tep is used as f i r s t  approxima- 
tion. The other s teps  shown in the flow diagram (Figure  3) are self-explanatory. A 
detailed derivation of the equations i s  given in a NASA report  [ 51. 

COMPUTE PRELIMINARY RE-COMPUTE 
VARYING ATTITUDE THRUST LEVEL - -c f 

9 = @ - K  + K t  P = F t -  
1 2  1 

-f1 

MEASURED DATA 

ATTITUDE 

q = @ - K  + K t  

- D, 6, E, E., ai FLY FOR PRESET PERIOD 

FIGURE 3. FLOW DIAGRAM 

The interval for  recomputing the guidance equation was arbi t rar i ly  se t  at 10 
seconds. 
m is s ible. 

There  are indications that a considerably longer s tep would have been per- 

F i r s t  Check Case: Direct Landing from Circular  Orbit 

A circular  parking orbit with a nominal height of 100 km is selected as initial 
condition fo r  the landing. The vehicle has an initial m a s s  of 30,000 kg, a nominal thrust  
of 9000 kp, specific impulse of 420 s e c ,  and in the nominal case  a landed mass  of 
18,572 kg. 



Table I shows the effect of probable e r r o r  sources  on the accuracy of the 
guidance. The perturbations consist  of distortions of the parking orbit  into an  ell ipse,  

, variations in the orientation of the ell ipse,  and e r r o r s  in ignition time. 

~ 

Angle 
between Ignition Thrust 

Peri- APO- Periselenum & Time Variation 
selenum selenum Land-Site Er ror  max. X 

Case  km km deg sec kP m 

TABLE 1. ERROR SUMMARY FOR DIRECT LANDING FROM 
PARKING ORBIT 

Landing E r r o r s  
Y j r  

- m  m/s  

X Y 
km km t sec  

I 100 100 
I1 100 150 
I11 50 100 
nr 100 150 
V 50 100 
VI 75 125 
VI1 75 125 
VIII 100 100 
M 1 00 100 

cp V F h 
deg 4 s  kP km 

0 0 +320 -.12 -. 09 -. 0: 
180 0 +850 -.07 -. 05 -. 0: 

0 0 * 60 - . i o  -. 12 -. 0: 
0 0 1310 -.07 -. 05 -. O !  

180 0 +340 -.09 -. 06 -. 0: 
90 0 +320 -.12 -. 07 -. 0: 

270 0 +320 -.09 -. 07 -. 0: 
0 +i 0 +310 - . i o  -. 07 - . 0: 
0 -10 *320 - . I 2  -. 01 -. 0: 

Table 1 shows that in all cases  the e r r o r s  at landing are negligible. The payload 
loss ,  compared to an optimum descent from the initial conditions, was within the com- 
puting accuracy of about 10 kg, and therefore is not shown. The thrust  level variations 
shown a r e  the maximum deviations occurring at any time. They are always within & l o  
percent of the nominal value. Three typical t ra jector ies  are shown in Tables 2, 3, and 4. 

TABLE 2. DESCENT FROM NOMINAL PARKING ORBIT (CASE I) 

60 
100 
1 40 
1 80 
220 
26 0 
300 
340 
38 0 
42 0 
46 0 
500 
540 
580 
608.3 

-448.9 
-387.0 
-328.5 
-273.8 
-223.5 
-178.0 
-137.5 
-102.3 

-72.5 
-48.1 
-29.0 
-14.9 

-5.7 
-0.9 

0.0 

44. 3 
57.5 
65. 4 
68.7 
68. 1 
64. 1 
57.6 
49.2 
39.6 
29.7 
20. 1 
11. 6 
5.0 
0.9 
0.0 

227.9 
217.7 
208. i 
199.0 
190.4 
182.2 
174.2 
166.6 
159.2 
151.9 
144.8 
137.8 
130.9 
124.0 
119.3 

1695.3 
1627.3 
1548.4 
1459.5 
1361.5 
1255. i 
1140.6 
1018.4 
888.6 
751.3 
606.3 
453.5 
292.9 
124.3 

0: 0 

9005 
8912 
8844 
8796 
8762 
8737 
8720 
8708 
8701 
8696 
8694 
8693 
8693 
8693 
8693 

100.0 
98 
95. i 
89.4 
81.8 
72.9 
62.8 
52. 1 
41.1 
30.4 
20.4 
11.7 

5.0 
0.9 
0.0 



TABLE 3. DESCENT FROM DISTURBED PARKING ORBIT (CASE 11) 

t X Y cp V 
sec km km deg m / s  

F h 
kP km 

108.8 
148.8 
188.8 
228.8 
268.8 
308.8 
348.8 
388.8 
428.8 
468.8 
508.8 
548.8 
588.8 
628.8 
668.8 
715.9 

t X Y 
sec km km 

-481.0 
-420.0 
-361.4 
-306.0 
-254.. 5 
-207.4 
-165.0 
-127.5 

-95.2 
-67.9 
-45.7 
-28.3 
-15.5 

-6.8 
-1.8 

0 

cp V F h 
deg m / s  kP km 

86.8 
100.2 
107.7 
109.9 
107.6 
101.6 
92.6 
81.3 
68.6 
55.1 
41.7 
29.1 
17.9 
8.9 
2.7 
0 

246.3 
232.2 
219.6 
208.2 
197.8 
188.1 
179.0 
170.4 
162.1 
154.2 
146.5 
139.0 
131.7 
124.6 
117.5 
109.4 

1656.8 
1630.0 
1585.3 
1525.1 
1451.9 
1367.5 
1272.9 
1169.0 
1056.2 
935.0 
805.4 
667.4 
521.0 
366.1 
202.9 

0 

9037 
8773 
8586 
8467 
8386 
8331 
8291 
8264 
8244 
8231 
8222 
8216 
8214 
8213 
8213 
8213 

149.2 
147.6 
142.7 
135.1 
125.1 
113.3 
100.0 
85.8 
71.1 
56.4 
42.3 
29.3 
18.0 
8.9 
2.7 
0 

TABLE 4. DESCENT FROM DISTURBED PARKING ORBIT (CASE 111) 

113.6 
153.6 
193.6 
233.6 
273.6 
313.6 
353.6 
393.6 
433.6 
473.6 
513.6 
553.6 
593.6 
622.9 

-432.7 
-369.9 
-311.1 
-256.7 
-206.9 
-162.2 
-122.7 

-88.6 
-60.0 
-37.0 
-19.6 

-7.8 
-1.4 

0 

-2.4 
11.3 
20. 8 
26.7 
29.4 
29. 3 
27. 1 
23. 2 
18. 3 
13.0 
7. 8 
3.5 

.7 
0 

207.3 
209.5 
194.7 
188.6 
182.7 
176.8 
171.1 
165.4 
159.7 
154.1 
148.6 
143.0 
137.5 
133.5 

1707.8 
1607.4 
1501.3 
1389.6 
1272.4 
1149.6 
1021.3 
887.3 
747.6 
601.8 
449.8 
291.3 
125.9 

0 

8999 
8983 
8970 
896 I 
8954 
8949 
8946 
8944 
8942 
8942 
8942 
8942 
8943 
8943 

50.7 
50.0 
48. I 
45. 3 
41.4 
36.7 
31.3 
25. 4 
19.3 
13. 4 
7.9 
3.5 

. 7  
0 
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Second Check Case: Landing from a Hohmann Transfer  Ellipse 

c 
Angle fr. Thrust 

Peri-  APO- Per ise  lenum to Time Variation 
selenum selenum Land-Site E r r o r  Max. X 

Case  km km deg sec kP m 

A nominal periselenum of 20 km as standard ignition point is chosen. It is varied 
similarly as in First Check Case ,  except that the periselenum altitude is changed &IO0 
percent (Table  5).  The vehicle is the same as in Case I except that the thrust  has  a 
nominal value of 15,000 kp and the landed m a s s  is 19,522 kg. 

Landing Errors 
Y 
m 

TABLE 5. ERROR SUMMARY FOR LANDING FROM HOHMANN ELLIPSE 

t 
sec  

X Y cp V F h 
km km deg m / s  kP km 

Y 
m / s  

I 20 100 -8.5 0 *30 -. 14 

I11 0 100 -8.5 0 *io -. o i  
I1 40 i o 0  -8. 5 0 *170 -. 29 

Iv 20 100 -18.5 0 i 4 0  -. 15 
V 20 i o 0  +l. 5 0 +30 -. 14 
VI 20 100 -8.5 +10 + l i O O  -. 17 

VII 20 i o0  -8.5 -io +30 -. io 
-30 

-950 

.-. 28 -. 04 -. 38 -. 07 
-. 05 -. oi -. 31 -. 05 
-. 28 -. 04  
-. 34 -. 05 

-. 21 -. 03 

Case I11 demonstrates ra ther  dramatically the power of the system. The vehicle 
grazes  the surface when power is applied. Still,  it recovers  and lands with perfect 
accuracy (F igure  4 and Table 8) . In addition, Cases  I11 and lV are equivalent to missing 
the t ime for  the Hohmann kick by about *3 minutes. Tables 6, 7, and 8 show some more  
t ra jectory details .  

TABLE 6. DESCENT FROM NOMINAL HOHMANN ELLIPSE (CASE I) 

54. 3 
94.3 

134.3 
174.3 
214.3 
254.3 
294.3 
314.3 
346.5 

-259.1 
-196.0 
-140.6 

-93.7 
-55.8 
-27.4 

-8.8 
-3.4 
-0.0 

0. 8 
8.3 

11. 7 
11.6 
9.3 
5.8 
2.3 
0.9 
0.0 

199.0 1702.9 15000 20.0 
192. 1 1515.2 14987 19. 3 
185.2 1314.4 14978 17.3 
181.5 1099.8 14973 14. 1 
171.9 871. 1 1497 0 10.2 
165.3 627.0 i 496 8 6. 0 
158.8 366.7 14968 2.3 
155.6 230.0 14968 0.9 

, 150.4 0.0 14968 0.0 
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Y 

t X 
sec km 

. , 

I 

Y cp V F h 
km deg m / s  kP km 

TABLE 7. DE 

FIGURE 4. TYPICAL TRAJECTORIES 

CENT FRO1 

- 
10 km X 

- 10 km 

DISTURBED HOHMANN ELLIPSE (C. SE 11) 
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TABLE 8. DESCENT FROM DISTURBED HOIIMANN ELLIPSE, GRAZING 
SURFACE (CASE 111) 

, t  X Y cp V F h 
sec km km deg m / s  kP km 

51.4 
91.4 

131.4 
171.4 
211.4 
251.4 
291.4 
339.2 

-259.1 
-195.6 
-140.1 

-93.0 
-54.9 
-26.4 

-8.0 
0.0 

-19.4 
-10.8 

-4.9 
-1.4 

0 . 3  
0.7 
0 .4  
0 . 0  

184.2 
181.3 
178.3 
175.4 
172.5 
169.6 
166.6 
163.2 

1696.5 
1498.0 
1289.8 
1070. G 
839.3 
594.3 
333.9 

0 

1.7003 
1 5 0 0.3 
12007 
15008 
15009 
15009 
15010 
15010 

0. 0 
0. 2 
0. 7 
1. 1 
1 .2  
0.9 
0. 4 
0 .0  

CONCLUSIONS 

No attempt is made to prove the validity of the iterative guidance scheme in a 
general way. However, when used for  a specific application, a lunar landing, a l l  re- 
quirements previously stated are satisfied. It handles disturbances beyond those ex- 
pected in a real flight with a minimum of measurements.  Payload loss  i s  negligible, 
the landing accuracy does not deter iorate ,  and control requirements,  especially thrust  
control,  are acceptable. 

At the same  t ime,  the computation effort is modest. Calculation t ime for  the 
s teer ing equations ( including trajectory calculation) for  one integration s tep is 10 
seconds on a smal l ,  medium speed computer,  the RCP 4000, i. e. , in rea l  time. 
Storage requirements of 1300 words are well within the capacity of these computers.  

The important question of how to measure  the required variables i s  beyond the 
topic of this report .  Other questions that remain a r e  ( 1) the extension to three di- 
mensions,  which should not pose any major  difficulties, ( 2 )  some improvement of the 
computer program , and ( 3 )  an  analysis of the effects of instrument e r r o r s .  

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama February 1965 
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