Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

Space Guidance Analysis Memo \# 38-64

TO: SGA Distribution
FROM: Peter J. Philliou
DATE: September 23, 1964
SUBJECT: Optimal Guidance Laws

The material in this memo is taken primarily from lectures given by Professor Bryson. A general guidance law is presented and then it is applied to
(a) injection
(b) interception
(c) rendezvous
(d) soft landing

Let subscript p denote the pursuing body and T the target body.

The equations of motion are

$$
\dot{\mathrm{v}}_{\mathrm{T}}=\underline{\mathrm{f}}_{\mathrm{T}}
$$

where $\underline{f}_{\mathrm{T}}=$ external forces per unit mass

$$
\dot{\underline{v}}_{\mathrm{p}}=\underline{f}_{\mathrm{p}}+\underline{\mathrm{a}}
$$

where $\underline{a}=$ control acceleration

$$
\begin{aligned}
& \underline{\underline{r}}_{\mathrm{T}}=\underline{\mathrm{v}}_{\mathrm{T}} \\
& \underline{\underline{r}}_{\mathrm{p}}=\underline{\mathrm{v}}_{\mathrm{p}}
\end{aligned}
$$

We now have 12 equations, but we want relative values, consequently the 12 equations reduce to 6 by letting

$$
\begin{aligned}
& \underline{\mathrm{v}}=\underline{\mathrm{v}}_{\mathrm{p}}-\underline{\mathrm{v}}_{\mathrm{T}} \\
& \underline{\mathrm{r}}=\underline{\mathrm{r}}_{\mathrm{p}}-\underline{\mathrm{r}}_{\mathrm{T}} \\
& \underline{\mathrm{f}}=\underline{\mathrm{f}}_{\mathrm{p}}-\underline{\mathrm{f}}-\mathrm{T}
\end{aligned}
$$

The 6 equations are

$$
\underline{\dot{v}}=\underline{f}+\underline{a}
$$

$$
\underline{\dot{r}}=\underline{v} \quad t_{0} \leqq t \leqq t_{1}
$$

where t_{0} is initial time and t_{1} is final time. The problem is to find the control law a which minimizes the cost function J, where J is assumed to be

$$
J=\frac{1}{2}\left[C_{v} \underline{v} \cdot \underline{v}+C_{r} \underline{r} \cdot \underline{r}\right] t_{1}+\int_{t_{0}}^{t_{1}} \frac{a^{2}}{2} d t
$$

and which satisfies the differential equations

$$
\begin{aligned}
& \underline{\underline{v}}=\underline{f}+\underline{a} \\
& \underline{\underline{r}}=\underline{v}
\end{aligned}
$$

This is a control problem to minimize J, the cost function, with initial state, time and final time fixed. The cost function J considers fuel cost and C_{r}, C_{V} are weighting factor constants for position and velocity. Form the Hamiltonian

$$
H=\frac{a}{2}^{2}+\underline{\lambda} \cdot \underline{v}+\underline{p} \cdot(\underline{f}+\underline{a})
$$

and consider the Hamiltonian system (differential equations associated with H)

$$
\begin{aligned}
& \underline{\underline{p}}=-\frac{\partial H}{\partial \underline{v}}=-\underline{\lambda} \\
& \underline{\dot{\lambda}}=-\frac{\partial H}{\partial \underline{r}}=0 \rightarrow \underline{\lambda}=\mathrm{constan} t
\end{aligned}
$$

$\underline{p}, \underline{\lambda}$ are the adjoint free vectors.

For optimality (special case of maximum principle)

$$
\begin{aligned}
& \frac{\partial H}{\partial \underline{a}}=0=\underline{a}+\underline{p} \rightarrow \underline{a}=-\underline{p} \\
& \underline{p}=-\left(t-t_{0}\right) \underline{\lambda}+\underline{p}_{0}
\end{aligned}
$$

solving for \underline{a}

$$
\begin{align*}
& \underline{\mathrm{a}}=\left(t-t_{0}\right) \underline{\lambda}-\underline{p}_{0} \tag{1}\\
& \underline{\dot{v}}=\underline{f}+\left(t-t_{0}\right) \underline{\lambda}-\underline{p}_{0} \\
& \underline{\dot{r}}=\underline{v}
\end{align*}
$$

from transversality conditions

$$
\begin{aligned}
& \underline{p}\left(t_{1}\right)=C_{v} \underline{v}\left(t_{1}\right) \\
& \underline{\lambda}\left(t_{1}\right)=C_{r} \underline{r}\left(t_{1}\right)
\end{aligned}
$$

let

$$
\begin{aligned}
& \underline{v}\left(t_{0}\right)=\underline{v}_{0} \\
& \underline{r}\left(t_{0}\right)=\underline{r}_{0}
\end{aligned}
$$

solve for $\underline{v}, \underline{r}$ with $\underline{f}=$ constant

$$
\begin{align*}
& \underline{v}=\left(t-t_{0}\right) \underline{f}+\frac{\left(t-t_{0}\right)^{2}}{2} \underline{\lambda}-\underline{p}_{0}\left(t-t_{0}\right)+\underline{v}_{0} \tag{2}\\
& \underline{r}=\frac{\left(t-t_{0}\right)^{2}}{2} \underline{f}+\frac{\left(t-t_{0}\right)^{3}}{6} \underline{\lambda}-\underline{p}_{0} \frac{\left(t-t_{0}\right)^{2}}{2}+\underline{v}_{0}\left(t-t_{0}\right)+\underline{r}_{0} \tag{3}
\end{align*}
$$

$\underline{\lambda}$ is constant, therefore

$$
\begin{equation*}
\underline{\lambda}=C_{r} \underline{r}\left(t_{1}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{p}\left(t_{1}\right)=C_{v} \underline{v}\left(t_{1}\right)=-\left(t_{1}-t_{0}\right) \underline{\lambda}+\underline{p}_{0} \tag{5}
\end{equation*}
$$

Eqs. 1 to 5 are the basic equations which will now be applied to some special cases.
(A) Injection

Final position is not important, therefore

$$
\begin{aligned}
\mathrm{C}_{\mathrm{r}} & =0 \\
\therefore: \underline{\lambda} & =0
\end{aligned}
$$

Therefore from (1)

$$
\underline{\mathrm{a}}=-\underline{\mathrm{p}}_{0}
$$

from (2)

$$
\begin{gathered}
\underline{v}\left(t_{1}\right)=\left(t_{1}-t_{0}\right) \underline{f}-\underline{p}_{0}\left(t_{1}-t_{0}\right)+\underline{v}_{0} \\
\underline{v}_{0}=\underline{v}_{0}-\underline{v}_{T}
\end{gathered}
$$

$$
\begin{aligned}
& \underline{v}\left(t_{1}\right)=\left(t_{1}-t_{0}\right) \underline{f}-\underline{p}_{0}\left(t_{1}-t_{0}\right)+\underline{v}_{0}-\underline{v}_{T} \\
& \underline{v}\left(t_{1}\right)+\underline{p}_{0}\left(t_{1}-t_{0}\right)=\left(t_{1}-t_{0}\right) \underline{f}+\underline{v}_{0}-\underline{v}_{T}
\end{aligned}
$$

from (5)

$$
p\left(t_{1}\right)=C_{v} v\left(t_{1}\right)=-\left(t_{1}-t_{0}\right) \underline{\lambda}^{2}+\underline{p}_{0}=\underline{p}_{0}
$$

since

$$
\underline{\lambda}=0
$$

therefore \underline{p} is constant.

$$
\begin{aligned}
& \underline{p}_{0}=\frac{\underline{f}\left(t_{1}-t_{0}\right)+\underline{v}_{p_{0}}-\underline{v}_{T}}{\left(t_{1}-t_{0}\right)+\underline{C}_{v}} \\
& \underline{f}=\underline{f}_{p}-\underline{f}_{T}=\underline{g}-0=\text { constant }
\end{aligned}
$$

Usually want

$$
\begin{aligned}
& \underline{v}\left(t_{1}\right)=0 \\
& C_{v} \rightarrow \infty
\end{aligned}
$$

then

$$
\underline{a}\left(t_{1}\right)=\underline{p}_{0}=-\underline{g}-\frac{\underline{v}_{0}-\underline{v} T}{t_{1}-t_{0}}
$$

sample data feedback law where t_{0} is latest sample time.
for continuous measurements

$$
\underline{a}=-\underline{g}-\frac{\underline{v}_{p}-\underline{v}_{T}}{t_{1}-t} \quad \text { continuous feedback control law }
$$

(B) Interception

For interception, final velocity is not important, therefore

$$
\begin{gathered}
C_{V}=0 \\
\underline{a}=\left(t-t_{0}\right) \underline{\lambda}-\underline{p}_{0}
\end{gathered}
$$

Therefore, one must determine $\underline{\lambda}, \underline{p}_{0}$

Assume $\underline{f}=0$
$\underline{\lambda}=C_{r}\left[\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}-\underline{p}_{0} \frac{\left(t_{1}-t_{0}\right)^{2}}{2}+\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}\right]$

$$
\underline{p}_{0}=\left(t_{1}-t_{0}\right) \underline{\lambda}
$$

$\underline{\lambda}=C_{r}\left[\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}-\frac{\left(t_{1}-t_{0}\right)^{3}}{2} \underline{\lambda}+\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}\right]$
$\underline{\lambda}-C_{r} \frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}+C_{r} \frac{\left(t_{1}-t_{0}\right)^{3}}{2} \underline{\lambda}=C_{r}\left[\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}\right]$
$\frac{\underline{\lambda}}{C_{r}}-\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}+\frac{\left(t_{1}-t_{0}\right)^{3}}{2} \underline{\lambda}=\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}$

Solving for $\underline{\lambda}$:

$$
\underline{\lambda}=\frac{\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}}{\frac{\left(t_{1}-t_{0}\right)^{3}}{3}+\frac{1}{C_{r}}}
$$

Solve for \underline{p}_{0} in $\underline{p}=\left(t_{1}-t_{0}\right) \underline{\lambda}$ to yield

$$
\begin{gathered}
\underline{p}_{0}=\frac{\left(t_{1}-t_{0}\right)\left[\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}\right]}{\frac{\left(t_{1}-t_{0}\right)^{3}}{3}+\frac{1}{C_{r}}} \\
\underline{a}=\frac{\left(t-t_{0}\right)\left[\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}\right]}{\frac{\left(t_{1}-t_{0}\right)^{3}}{3}+\frac{1}{C_{r}}}-\frac{\left(t_{1}-t_{0}\right)\left[\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}\right]}{\frac{\left(t_{1}-t_{0}\right)^{3}}{3}}+\frac{1}{C_{r}}
\end{gathered}
$$

Combining terms to yield
$\underline{a}=-\frac{\left(t_{1}-t\right)\left[\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}\right]}{\frac{\left(t_{1}-t_{0}\right)^{3}}{3}+\frac{1}{C_{r}}} \quad$ sample data case

$$
\underline{a}=-\frac{\left(t_{1}-t\right)\left[\underline{v}\left(t_{1}-t\right)+\underline{r}\right]}{\frac{\left(t_{1}-t\right)^{3}}{3}+\frac{1}{C_{r}}}
$$

continuous feedback control law

NOTE:
As $C_{r} \rightarrow \infty, \underline{r}\left(t_{1}\right) \rightarrow 0$ at the expense of large $\int_{t_{0}}^{t} a^{2} d t$
Or $\underline{a} \rightarrow \frac{-3\left[\underline{v}\left(t_{1}-t\right)+\underline{r}\right]}{\left(t_{1}-t\right)^{2}}$ as $C_{r} \rightarrow \infty$

(C) Rendezvous

To place pursuing body in immediate vicinity of target with small component of relative velocity.

$$
\underline{a}=\left(t-t_{0}\right) \underline{\lambda}-\underline{p}_{0}
$$

Assume $\underline{f}=0$

This is reasonable if the distance from the target to pursuing body is small, since in this case

$$
\begin{gathered}
\underline{f} p \approx \underline{f} T \\
v\left(t_{1}\right)=0=\frac{\left(t_{1}-t_{0}\right)^{2}}{2} \underline{\lambda}-\underline{p}_{0}\left(t_{1}-t_{0}\right)+\underline{v}_{0} \\
r\left(t_{1}\right)=0=\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}-\underline{p}_{0} \frac{\left(t_{1}-t_{0}\right)^{2}}{2}+\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0} \\
\underline{p}_{0}\left(t_{1}-t_{0}\right)=\underline{v}_{0}+\frac{\left(t_{1}-t_{0}\right)^{2}}{2} \underline{\lambda} \\
\left.0=\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\underline{p}_{0}}=\frac{\underline{v}_{0}}{t_{1}-t_{0}}+\frac{t_{1}-t_{0}}{2} \underline{\lambda}_{t_{1}-t_{0}}^{2}+\frac{\underline{v}_{0}-t_{0}}{2} \underline{\lambda}\right] \frac{\left(t_{1}-t_{0}\right)^{2}}{2}+\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0} \\
0=\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}-\underline{v}_{0} \frac{\left(t_{1}-t_{0}\right)}{2}-\frac{\left(t_{1}-t_{0}\right)^{3}}{4} \underline{\lambda}^{2}+\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{\underline{v}_{0}\left(t_{1}-t_{0}\right)}{2}-\underline{r}_{0}=\frac{\underline{\lambda}}{12}\left[\left(t_{1}-t_{0}\right)^{3}\right] \\
& \underline{\lambda}=\frac{-6 \underline{v}_{0}}{\left(t_{1}-t_{0}\right)^{2}}-\frac{12 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{3}} \\
& \underline{p}_{0}=\frac{\underline{v}_{0}}{t_{1}-t_{0}}+\frac{t_{1}-t_{0}}{2}\left[-\frac{6 \underline{v}_{0}}{\left(t_{1}-t_{0}\right)^{2}}-\frac{12 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{3}}\right] \\
& \underline{p}_{0}=\frac{\underline{v}_{0}}{t_{1}-t_{0}}-\frac{3 \underline{v}_{0}}{t_{1}-t_{0}}-\frac{6 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{2}} \\
& \underline{p}_{0}=-\frac{2 \underline{v}_{0}}{t_{1}-t_{0}}-\frac{6 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{2}} \\
& \underline{a}=\left(t-t_{0}\right)\left[\frac{-6 \underline{v}_{0}}{\left(t_{1}-t_{0}\right)^{2}}-\frac{12 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{3}}\right]+\frac{2 \underline{v}_{0}}{t_{1}-t_{0}}+\frac{6 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{2}} \\
& \underline{a}=\frac{-6 \underline{v}_{0}}{t_{1}-t_{0}}-\frac{12 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{2}}+\frac{2 \underline{v}_{0}}{t_{1}-t_{0}}+\frac{6 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{2}} \\
& \underline{a}(t)=\frac{-4 \underline{v}_{0}}{t_{1}-t_{0}}-\frac{6 \underline{r}_{0}}{\left(t_{1}-t_{0}\right)^{2}} \\
& a(t)=\frac{-4 v}{t_{1}-t}-\frac{6 r}{\left(t_{1}-t\right)^{2}}
\end{aligned}
$$

(D) Soft Landing

Assume

$$
\begin{gathered}
\underline{f}=\underline{g}=\text { constant } \\
\underline{a}=\left(t-t_{0}\right) \underline{\lambda}-\underline{p}_{0} \\
0=\frac{\left(t_{1}-t_{0}\right)^{2}}{2} \underline{\lambda}-\underline{p}_{0}\left(t_{1}-t_{0}\right)+\underline{v}_{0}+\left(t_{1}-t_{0}\right) \underline{g} \\
0=\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}-\underline{p}_{0} \frac{\left(t_{1}-t_{0}\right)^{2}}{2}+\underline{v}_{0}\left(t_{1}-t_{0}\right)+\underline{r}_{0}+\frac{\left(t_{1}-t_{0}\right)^{2}}{2} \underline{g} \\
\underline{p}_{0}=\frac{\underline{v}_{0}}{t_{1}-t_{0}}+\frac{t_{1}-t_{0}}{2} \underline{\lambda}+\underline{g} \\
0=\frac{\left(t_{1}-t_{0}\right)^{3}}{6} \underline{\lambda}-\frac{1}{2}\left[\frac{\underline{v}_{0}}{t_{1}-t_{0}}+\frac{t_{1}-t_{0}}{2} \underline{\lambda}+\underline{g}\right]\left(t_{1}-t_{0}\right)^{2}+\underline{v}_{0}\left(t_{1}-t_{0}\right)
\end{gathered}
$$

Solve for $\underline{p}_{0}, \underline{\lambda}$ and substitute in equation for \underline{a} to yield

$$
\underline{a}=\frac{-4 \underline{v}}{t_{1}-t}-\frac{6 \underline{r}}{\left(t_{1}-t\right)^{2}}-\underline{g}
$$

