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FROM: 	William Marscher 

DATE: 	August 4, 1964 

SUBJECT: 	Universal Conic Time of Flight Computations 

The purpose of this memo is to extend the Herrick Universal for-

mulation of Kepler's time of flight problem, which uses the Battin modi-

fied transcendental functions so that five other time of flight problems can 

also be solved universally. These problems are defined as follows. (See 

figure for variable definitions. ) 

Lambert's Problem:  given r 0, r 1 , t; solve for the conic parameters. 

•MC 

Reentry Problem: given r o, r 1 , y1 , t; solve for the conic para-

meters. 

Time-Theta Problem: given r v 0' 	0' 
; solve for the time of flight. 

Time-Pericenter Problem:  given r0, v0 ; solve for time of flight to 

pericenter. 

V 	Time Radius Problem: given r 0, v0; solve for time of flight to r 1 . 

An appendix to this memo is attached which covers the following 

topics: 

(I) Derivation of the above Universal Time of Flight Formula 

(II) Derivation of other equations 

(III) Iteration limits 

(IV) A suggested iteration algorithm 



OCCUPIED 
FOCUS 

t 

= semi-latus rectum p 

= time of flight from r 0  to r i  

1 
= —a where a = semimajor axis 

Figure and Variable Definitions 

x 	= Herrick's variable, AE   ellipse, 
,B
OG  hyperbola 

4.(7, 	 re 

S(Aug) - 	 - 	(Battin's Transcendental function) 

(Battin's Transcendental function) 

= gravitational constant 

r 
p 
	= pericenter radius 

For convenience the following nondimensional variables are defined: 

R = P = 
pir0 
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3! 	5! 	7! 
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_ C(Aug ) 	-2-; 	4! 	6! 
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Definition of Those Variables Used in the Appendix Not Previously DefinecL 

AE 	= eccentric anomaly difference (ellipse) 

AG 	= hyperbolic equivalent to ZIE 

e 	= eccentricity 

f 	= true anomaly (measured from pericenter) 

vr 	= radial velocity 

vc 	= circumferential velocity 

0 	= true anomaly difference (f 1  - f0 ) 

h 	= angular momentum 

* See references for definitions. 
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I. 	Lambert's Problem  (given r0, r 1 , t) 

0 < T < co 

(a) guess cot (70 ) 

For B < 180° ,  c < cot (7 ) < b 

For 0 > 180° ,  -Go< cot -y < b 

where 

b = cot ( /\1 	2R  

1- cos (0) 

■ 

c= It - cos (0) 

sin (0) 

(T=ooatcot(70)=b)  

NOTE: c is infinite at 0 = 180 ° . Usually a large negative number will 

suffice for c in this event. 

(b) compute P, A 

P - 
- cos (0) + sin (0) cot (7 ) 

A=2 - P (1 + cot 

1  -  cos (0)  (1) 

(2)' 
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(c) solve for X iteratively 

1 - AX
2 

S(AX
2

)  7)+0t 	- cot )) 
2 	

0 
C(AX

2
) 

(3) 

0 < X < oo 

NOTE: Practical upper limit for X: 

A positive, X 	2PI  

A negative, X = 4PI  
41711—  

(d) compute T 

T =API  cot (70 )X2  C( X
2 ) + (1 - A) X3S(AX 2 ) + X 

	
(4) 

(e) If T does not agree with desired T, adjust cot (7 0 ) appropriately. 

Repeat until agreement is produced. 

NOTE: By using the identity 

PRX2 C(AX2 ) = 1 - cos (9) 

C(AX
2 ) can be eliminated from equations (3) and (4), thus requiring the 

computation of S(AX 2 ) only. 

II 	Reentry Problem  (given r0, r1, yl, t) 

0 < T < 00 for R >1 

(a) guess cot (1/ 0 ) 

For R > 1, 	(1 + cot 2( ) 2  I 	( 0 ) R - < cot y 

T = co for cot (70 ) at upper limit 

For R < 1, see Appendix. 



R 2 (1 + cot 2
(y10  )) - 1 + cot 2 

 (y0 ) ) 

P - 	 2(R - 1) 
(6) 

(b) compute cot (0/2), P, A 

cot (9/2) - cot (y
0) + R cot (71 ) 	

(5) 
(1 - R) 	

R#1 

A = use equation (2) 

(c) solve for X iteratively using equation (3) 

(d) compute T using equation (4) 

(e) if T does not agree with desired T, adjust cot ( -y ) appropri-

ately. . Repeat until agreement is produced. 

III 	Time-Theta Problem (given r , v0, 
0' 

(a) compute cot (70 ), A, P 

cot (70 ) - 

where cos (y0 ) = 1r • lv 0 	0 

cos (70 ) 
(7) 

- cos (70 ) 

A = 2 - V2 

P - 
1 , 1 + cot 2 

 VY 0 , 

(b) solve for X iteratively using equation (3) 

(c) compute T using equation (4) 

IV 	Time-Pericenter Problem (given r 0, vo ) 

(a) compute cot (y0), A, P, R, cot (9/2) 

2-A 
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cot (7 = use equation (7) 

A = use equation (8) 

P = use equation (9) 

R 
	1+ All -PA 	

(10) 
P 

cot (8/ 2) = use equation(5)with cot (y 1) = 0 

(b) solve for X iteratively using equation (3) 

(c) compute T using equation (4) 

V 	The Time-Radius Problem  (given ro, vo, r1) 

(a) compute cot (y0 ), A, P, cot (y1), cot (0/ 2) 

cot (70 ) 

A = 

P = 

use equation (7) 

use equation (8) 

use equation (9) 

cot (71 ) 

 

2 - A/R  _1  

PR 

cot (0/ 2) = use equation (5) 

(b) solve for X iteratively using equation (3) 

(c) compute T using equation (4) 

NOTE: After P and A are calculated,  it  might be advisable to check 

against rp where rp  = r0P/(1+ 41 - PA). 

r
1 

VI 	Position and Velocity Computations  

The following equations are convenient for computing r and v 

vectors 
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1 r  = unit vector normal to r 0  in the plane of the conic 
0 such that the angle from r 0  to lir  is in the direc-

tion of flight. 	 0  

(12) 

where 

1 = UNIT (r 0  ) ro  

7.1 = r1 (cos (0) -1r + sin (0) 
	

(13) 

—V1 -11 11RP  [(cot (1/1 ) 
r1 

cos (0 ) - sin (9)) lr  

+ (cot (yi) sin (e) + cos (0) lir 	 (14) 

References: 

Herrick, S. , Astrodynamical Report, No. 7, July, 1960. Prepared for 
the AIR Research and Development Command (AFOSR TN-60-773). 

Battin, R. H., Astronautical Guidance, Chapter 2, McGraw -Hill Book 
Company, Inc., New York, 1964. 
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Appendix  

z. 	Derivation of the Universal Time of Flight Formula 

Since there is little written on the derivation of the Herrick 

Universal Time of Flight Formula, the writer has included this sum-

mary as background to this memo. 

The key to devising this universal time of flight formula was 

the recognition by Herrick that .AE Ara-1  (defined as x) remained finite 

as an ellipse changed into a parabola and that AGO. remained finite as 

a hyperbola  changed into a parabola. Herrick evidently reasoned that 

if the time of flight equation could be expressed in terms of this vari-

able, that a universal formulation might result. Consequently, starting 

with the standard elliptic form of Kepler's Equation in terms of AE: 

• r0 	v00 t = .AE + 	 - cos (AE)] 
3 	

- 	- 	) sin (AE) 	(la) 
a  a 

and regrouping it as follows: 

r  
41/ t = a3/2  DE _ sin (AE)] + ( O )a3/2sin (AE)  

a 

I: 0 • TT
0  ail - cos CAE (2a) 

and expanding the terms in I i n  brackets: 

a3/2 DE DE 
a3/2 [AE - sin (AE)] = 

3! 	5! 

	

a[l - cos (LIE)] = a[AE 	
2 	E

4 

	

2! 	4! 

then substituting .AE= x/ A-  o. and defining U e  = a3/ 2  [AE - sin (AE) and 

[

Ce 
= a 1 - cos (AE) yields 

ra•MINMEIMI 	  

See references for derivation. 

(3a) 

(4a) 



3 5 
x 7 

	

U e = x 	x 
	 - 	 + 

	

3! 	a 	5! 	a
2 

7! 

2 

	

C
e 

= x 	x4 
	+  x

6 

	

2! 	a 4! 	a2 6! 

These series are finite as the ellipse changes to the parabola (a — 00). 

If U
e and C e are then substituted back into (2a), a time of flight formula 

valid for the ellipse and parabola results: 

• 472 t  _  0 	0 	 0C e  + (1 - —)U e + r0x 
a 

The same can be done for the hyperbolic equivalent of Eq. (la) 

which is: 

r V 
t - AG +  0 

• 
0  [

cosh(AG) - 1) 

r r, 
+11 - 	sinh (AG) 

a 

The resulting series is: 

3 
Uh 	+ x

5 
x

7 
+ 

3! 	a 	5! 	a2 7! 

2 
Ch = 3L- 	

x
4 

x
6 

+ 
2! 	a 	4! 	a

2
6! 

If the convention that a, the semimajor axis, is positive for an ellipse 

and negative for a hyperbola is adopted, then U e  = Uh  = U and C e  = Ch  

= C and a truely universal time of flight equation results: 

r0 v0 	 0 /112t - 	C + (1 - — )U + r x 0 
/Fi 	 a 

See references for derivation. 
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The Battin modification to the U and C Series can be obtained by introducing 

Ara-: 
x 

 

AE 

into Eqs. (3a) and (4a) prior to the expansion: 

Ue 
x

3
(AE - sin (AE))  

AE 3  
(10a) 

ce 
_ x2 (1 1 - cos (AE)1  

AE
2 

and expanding the trigonometric functions . yields: 

AE - sin (DE) _ 1 AE 2  + AE4  

AE
3 

3! 5! 	7! 

1 - cos (AE) 	1 	AE 2  + AE4 

AE 2 	2! 	4! 	6! 

(11a) 

(12a) 

(13a) 

The derivation of the hyperbolic case follows a similar pattern. If the 

convention that "a", the semimajor axis, is negative for a hyperbola is 

adopted, and the variable x is introduced, the elliptic and hyperbolic 

series become identical as before. 

Battin defined the sin - sigh series as the "S' .' Series, and the 

cos - cosh series as the "C" Series. If the argument of the series is 

chosen as AE
2 	

ax
2 and AG 

S(ax 2 )  

C(ax 2 )= 

2 = ax
2 

then 

2 ax  + 
( 	21 2  ax (14a) 

(15a) 

3! 5! 

ax 2  

7! 

(ax 2 ) 

2! 4!  6! 

Note that these series are valid for the Hyperbola only under the assump-

tion that "a" is negative when the argument is hyperbolic. 
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It is interesting to note the relationship between Herrick's and 

Battin's series. 

U = x3S (ax 2 ) 

C = x
2

C(ax
2

) 

The universal time of flight formula in terms of the S(ax 2
) and C(ax 2

) 

series is now: 

r • v 
-  0 0  x

2 
C(ax

2
) + (1 - ar0 )x

3
S(ax

2
) + r ox (16a) 

It is this form of the universal equation that is used in this memo. 

Equation (16a) can be expressed in terms of non-dimensional variables 

as follows: 

T 417 cot (y0 )X2 C(AX2 ) + (1 - A)X3 S(AX2 ) + X 	 (17a) 

where 

,r3 cot ( y0 ) - 

 

(18a) 

 

II. 	Derivation of Equations 

Equations (1) through (6) will now be derived. The following basic 

conic equations will be used in the derivations. The reader should refer 

to the references for their derivations. 

r - 
	p 
	

(polar equation of a conic) 	(lb) 

1 + e cos (f) 

ry r  
h =Arppi = rvc  = 	ry sin (y) (angular momentum equations) 

cot (y) 	 (2b) 

vr  =^I'— e sin (f) 	 (radial velocity) 	 (3b) 

* See next section of Appendix for derivation. 
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1-4 U + e cos (f)) 
p 

v 	2 1 -  _ 

/.4 	r 	a 

p = a(1 - e 2 ) 

(circumferential velocity) (41)) 

(energy integral) (5b) 

(definition of eccentricity) (6b) 

r = a(1 - e cos (E)) 	 (equivalent of (lb) in terms of the 
eccentric anomaly (ellipse)) 	(7b) 

r = a(e cosh (G) - ((7b) for hyperbola) (8b) 

(identity) (9b) 

(identity) (10b) 

cos (f) - 	cos (E) - e 

1 - e cos (E) 

sin (f) - 	e 2  sin (E)  

1 - e cos (E) 

A. Derivation of Equation (1)  

Equation (1) can be quickly derived by expressing (lb) at position 

r1  in terms of 6 and f 0  where f1  = f0  + 

P 	+ e cos (f0  + 0) 	 (11b) 
r

1  

substituting the identity cos (f 0  + 0) = cos (f 0 ) cos (0) - sin (f0 ) sin (6), 

and the equation 

e sin (f ) - 	P  cot (y0 ) 
r0  

(derived from (2b) and (3b)) and P-- = 1+ ecos (f 0 ) into (lib) yields: 
r 0  

(12b) 

P - 	1 - cos (0) 	
(13b) 

r0 	- cos (0)+ sin (0) cot (Y0 ) 
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r0  — 2 - -P (1 + cot 2 
('y0  ) ) 

a 
0 

(14b) 

or non-dimensionally 

P - 	
1 - cos (0)  

R - cos (6) + sin 0 cot 
-yo )  

B. Derivation of Equation (2)  

Equation (2) is easily obtained by expressing (2b) and (5b) at 

position r
0  and combining to yield 

or non-dimensionally 

A = 2 - P(1 + cot 2 
 (70  )) 

C. Derivation of Equation (3)  

Equation 3 can be obtained by starting with the identity 

0 sin ,(f1  - f0 ) 
cot (-- 

2 	1 - cos (fi  - fo ) 
(15b) 

and then substituting in the identities below 

sin (fi.  - f0 ) = sin (f1) cos (f0 ) - cos (f1) sin (f0 ) 	 (16b) 

cos (f1 
- f0 ) = cos (f ) cos (f 0 ) + sin (f1 ) sin (f0 ) 	 (17b) 

followed by the elemination of the true anomaly in favor of the eccentric 

anomaly using the identities (9b) and (10b) yielding 

cot ( e  ) - 
2 4 - e 2 11 - [cos El) cos (E 0 

 )+sin(E
1  ) sin (E)]] 

sin (El) cos (E 0) - cos (Ei) sin (E ) e sin (E l) + e sin (E 0 ) 



cot (B) 

2 

r
0  cot ( AE   ) + cot 

4pa 
	2 y0 ) 

	
(18b) 

which, on introducing the eccentric anomaly equivalent of (16b) and (17b), 
yields 

sin (AE) - e sin (E
l) + e sin (E 

0  cot ( 9  ) - 
2 

- e 21 [1 - cos (AE)] 

Introducing the identity 

sin (El ) = sin (E 0 ) cos (1E) + cos (E 0 ) sin (AE) 

yields 

	

cot ( ) = —
e 
	- e cos (E 0 )) sin (AE) 

	
e sin (E0 ) 

	

2 
	

4 1 -e 21 1(1 - cos(AE)) 
	

-e
2t  

e sin (E 0 ) can be eliminated by using (lob), (6b), (7b), and ,(12b) to produce 

e sin (E 0 ) ry  1 - e 2  cot (70 ) 

(7b), (6b), in addition to the eccentric anomaly,equivalent to (15b) can 

be introduced to produce 

which is a relationship between the true and eccentric anomaly differences 

which contains _no ambiguities. 

An equation similar to (18b) can be derived for the hyperbolic case: 

cot (—
e

) = 	
0 

 coth (AG)  + cot (yo
) 

2 	
-pa 
	2 

If Herricks variable x and the S(ax
2 
 ) and C(ax

2  ) series are introduced, 

a single equation valid for an ellipse, parabola or hyperbola results: 

0 
r0(1 - ax

2 
 S(ax

2 
 )) 

cot (—) - 	  + cot yo  
2 	 2 

C(ax ) 

(19b) 
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or nondimensionally 

cot 
0

) 	
1 - AX

2
S(AX 2

)  +cot (70 ) 
2 AIP XC(AX2 ) 

D. Derivation of Equation (4)  

Equation 4 is derived in Part I. of the Appendix (See Eq. 17a). 

There remains the derivation of Eq. 18a; which can be derived by ex-

panding the dot product 

0 U 
r0  v0 	( 70 ) 

 cos 	sin (7 0 ) _  
4T.I. sin (70 ) 

and introducing (2b) to yield 

* --v r
0 0 - Arpl  cot 7 ) 

E. Derivation of Equation (5)  

Equation (5) can be derived from (13b) by writing (13b) for 

the vector position r 1  as follows: 

P _ 	1 -  cos (0)  

r1 r1 1 r0 - cos (0) - sin (0) cot ('y1 ) 

and eliminating p between (13b) and (21b). 

F. Derivation of Equation (6)  

Equation (6) can be obtained by writing (14b) for ,vector loca-

tion r1 
 as follows: 

= 2 - - (1 + cot 2 ) 1 
rl  

(20b) 

(21b) 

(22b) 

and eliminating a between (22b) and (14b). 
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Iteration Limits 

Introduction  

Iteration of an equation requires that a valid range of the variable 

being adjusted during the iteration be established. 

In all five problems, the iterative solution to Eq. 3 is required. 

Thus, we must establish a range for x. 

The Lambert and Reentry problems have, in addition, an outer 

loop of iteration which requires selecting a value of the conic parameter 

cot (y0 ), while the other parameters of the conic are constrained. The 

selection of cot (y 0 ), in essence, is the selection of a particular conic 

section. There are two distinct limits we must observe when selecting 

a conic section: 1, the conic section must not be a hyperbola about the 

vacant focus, (characterized by a negative semi-latus rectum Hp"); 2, 

the conic section must not include a flight to infinity and return on a 

parabola or hyperbola. Should either of these two limits be violated, 

the results of the computation become meaningless, and generally most 

iteration algorithms fail to cope with the situation. 

A. Iteration Range of x 

From the geometric definition of the eccentric and true anomalies 

for the ellipse, it is apparent that AE = 27r when 0 = 271-  and AE = 0 when 

0 = 0. Since x = AE ) a, we see that xmax = 27rn fa where n is the number 
— 

of 360o rotations of the vector r 1. 
Thus, for the ellipse, the maximum 

value of x is infinite and the minimum value of x is zero. 

A convenient geometric interpretation of the limits of x for a 

hyperbola is not available, however, Eq. 8b can be used to deduce a 

limit. 

r = a(e cosh (G) - 1) 	 (8b) 

The range of G can now be determined to be 

r 	co as G 	oo 

r r 	 when G = 0 
pericenter 

Thus, since x = AG a, the limits of x for the hyperbola are the same as 

for the ellipse. 



A practic al limit for the elliptic case,  which allows one revolution, 
is obviously 0 < x < 27r J. For the hyperbola, we can use (8b) to estab-

lish 

r 	( 
-1 max  AG 	--z; cosh max 

pe 

In practice, 0 < x < 4PI, is a practical set of limits. 

B. Iteration Range for Lambert's Problem  

As previously discussed, we must not allow the conic parameter 

P to become negative while adjusting cot (-y0 ). Equation (1) below can 

be used to establish this limiting value of cot (ye ) which we shall call 

cot (70 )00. 

1 - cos (0)  P= 
R - cos (0) + sin (0) cot (70 ) 

It is characteristic of this equation that as 0 and R are varied to increase 

P, P will go to +00 and then return as a negative from -00. This occurs 

when the numerator of (1) is zero or 

cot ( 70 ) 00  - cos (0) - R 

sin (0) 

Using Eq. 1 we can reason, if 0 < 180
o, cot (1,0 ) must be more positive 

than cot (-y000  ) to be in a safe region and, if 0 > 180 °, cot (y0 ) must be 

less positive than cot (y 0 )00..to be in a safe region. The limits are then as 

listed below : 

For 0 < 180°  

cot (y0 ) 00 < cot -y0  < + 00 

For 0 > 180°  

2 

(lc) 

(1) 

(2c) 

-00 < cot (70 ) < cot (70 ),0  
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it is interesting to note that arc cot (cot
0
) ) is the angle between  09 

r0  and (r
0 
 - r ) 

A flight through infinity (FTI) can occur only if the conic is para-

bolic or hyperbolic. Thus, the problem is to avoid becoming parabolic 

when this leads to a FTI since this is the threshold of trouble. Equation 

2 can be conbined with Eq. 1 with A = 0 (parabolic condition) to yield the 

value of cot (yo ) when a parabola exists: 

cot (y„) = cot ( 8 ) + 2R 	
(3c ) 

2 	- cos (0) 

There are two solutions. One is an acceptable parabola and the other 

includes a FTI. We can reason geometrically, using a parabola, that 

the unacceptable parabola always occurs when the sign of the radical of 

(3c) is +. This value of cot (-y0 ) we shall call cot (y0 )p 

cot (70 )p = cot (
B
-) + 	

2R  

2 	1 - cos (0) 

It is obvious that, independent of 0 , cot (y0 ) must be less positive than 

cot 
(y0)p 

to be in a safe region. Thus, the limits on cot (y0) are: 

-00 <cot (yo ) < cot (yo )p  

The problem is to now decide on proper limits among those pres-

cribed by Eqs. (2c) and (4c). Comparing these two sets of limits for 

0 < 180°, we find that 

cot (-Yo)co<  cot (yo ) < cot (y0 )p  

We can also reason that T = 0 at cot (y0 ) 00  and T = co at cot (7 0 )p 
Again, comparing the two sets of limits for 0 > 180° , we see 

that the parabolic limit cot ey cdp  is less than cot (y o ) co. There then is 

no lower limit for cot (y 0 ) other than that value which creates a flight 

down r 0  and up rr1. The limits therefore are 

00 <cot (Y0 ) < cot (70 ) p  

again T moo at cot (70 )p  and T = 0 at cot (y 0 ) = 

(4c) 
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c. Iteration Range for the Reentry Problem  

As previously discussed, we must avoid a negative P when 

adjusting cot (y0) while iterating the reentry problem. With the con-

straints imposed by the reentry problem, Eq. 6 can be used to estab-

lish these limits. 

P 	 2(R - 1) 	
(6) 

, R2 [1 + cot
2 

(71  - [1 + cot
2 
 (To )] 

It is obvious that for R > 1, the denominator must not be negative; and 

for R < 1, the denominator must not be positive. The threshold in either 

case is when the denominator is zero. Setting the denominator to zero 

yields: 

Let 

cot (y0 ) 00  = + cot (yo ) n 	 (5c) 

Using (6), it is obvious that 

For R > 1 

- cot (y0 ) 00  <cot (y0 ) < cot (y0 )00  

For R < 1, we observe, using Eq. 6, that cot
2 (y0 ) must increase 

from cot
2 
 (y0 ) 	cot (-yo ) is to stay in a safe region. This being the case, 

we realize there are two regions of safeness-. We also observe that the 

radicand is about to become negative when R = sin (y i). Using Eq. 6, we 

realize that P can no longer become negative when R < sin (y1). Thus, 

the limits are: 

For R < 1  

For R > sin (y1)  

cot (Y0 )00  <cot (-y0 ) < + 00  

-co <c ot (y0) < -cot (Y0 ) c,o  
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For R < sin (^y1) 

0 < cot (70 ) < + 00 

- 00 < cot (70 ) < 0 

Now turning our attention to the flying through infinity (FTI) limits. These 

limits are conveniently studied by eliminating P between Eqs. (2)and (6), 

setting A = 0, and solving for cot (y0 ), denoted by cot ("Op  

II  cot ('Y ) = + (1 + cot 2 ( -YI ))R - 1I 0 p — 

Using a parabola, we can reason geometrically that for R > 1, the 

+ cot (7
0  ) p  is the unacceptable parabola and the safe region is more nega-

tive than this and for R < 1, there are a very complex set of limits. For 

R < sin
2 
 (71 ), the conic section cannot become parabolic. For cot (-y i ) > 0, 

cot (70)p yields two safe parabolas. For cot (73. ) < 0, cot (-y.,
u

)
p 
 yields two 

unsafe parabolas and cot
2

(70 ) must increase from this value. 

The limits to avoid a FTI are: 

R < 1 

cot (7i) < 0 and R > sin 2 (71 ) 

cot (70  )p  < cot (yo ) < + 00 

-00< cot (-yo ) < - cot (7 ) 0 p 

Otherwise 

0 < cot (70 ) < + 00 

-co < cot (y0 ) < 0  

R> I 
_ 00  <cot (70 ) < cot (70)p  

(6c) 

21) 



Comparing the two sets of limits, (infinite P and FTI),we see that 

the limits for R < 1 are exceedingly complex and the limits for R > 1, rec-

ognizing that cot (-yo )p  < cot (-y0 ) 00, are as follows: 

R > 1 

-cot (y ) < cot (y ) < cot ( -y ) 0 co 	0 	0 p 

cot (y0 )=.- -cot (y0 ),,, T = 0 

cot (70 )= cot (70 )p, T = oo 

IV. 	A Suggested Iteration Algorithm  

The iteration of the equations in this memo can be carried out with 

any of a number of algorithms. One very simple algorithm which the author 

has used with success is as follows: 

(A) Establish the maximum and minimum values of the adjusted 

variable.. (In the case of cot (7 0 ), the maximum and minimum 

must be decremented and incremented, respectively, by a small 

amount.to place them in a safe region. ) 

(B) Start the iteration at the minimum value. 

(C) Compute the resulting error. 

(D) Test the error to see if it is satisfactorily small. If so, the 

iteration is complete. If not, continue. 

(E) If the sign of the error has not changed from the sign which 

resulted when (B) was computed, reset the minimum value of the 

adjusted variable to the present value. If it has changed, reset the 

maximum value to the present value. 

(F) Compute a new adjusted variable as follows: 

max. value - min. value 
new adjusted variable = min. value 	+ 	 2 

(G) Return to (C) and repeat. 
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