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I have been examining the problem of how to 

efficiently store, in the Apollo Guidance Computer, ephemeris 

data giving the position of the moon as a function of time. The 

concrete results obtained so far indicate that is is possible to 

give three, eighth degree polynomials in time whose values agree 

within about a mile with the rectangular coordinates of the moon 

over a two week period. 

A program has been written for the Honeywell 800 

Computer 'which calculates the coefficients of the polynomial of 

given degree which approximates the input data to the program 

with the least maximum error. This program was used to 

calculate polynomials fitting the x, y and z coordinates of the 

moon in the earth centered ecliptic coorcinate system for the 

period from January 1, 1951 to January 15, 1951. The maximum 

errors are: 

x coordinate 	 0. 97 mi. 

y coordinate 	 0. 84 mi. 

z coordinate 	 0. 11 mi. 

Since the maximum errors in the three coordinates occur simulta-

neously on January 1 and January 15, the maximum vector error is . 

1 ; 3 mi = (0. 97) 2  + (0. 84) 2  + (0.11) 

Because the z axis in this coordinate system is perpendicular to 

the ecliptic plane and the moon's motion is nearly in the ecliptic 



plane, the variation of the moon's z 'coordinate is only about 
one tenth as large as the variations of its x and y coordinates 
as it revolves about the earth. This fact probably accounts 

for the relatively small z coordinate error. 

More computer runs are planned to determine how 

rapidly the maximum errors decrease as the degrees of the 

approximating polynomials are increased and to determine the 

effect of the length of the time interval over which the ephemeris 

data is approximated on the error. Lunar position data from other 

two week periods will also be fitted to find out if the error depends 

appreciably on the date. 

The remainder of this note is a brief discussion of the 

lunar position approximation problem. Two approaches to this 

problem are (a) to solve the equations of motion of the moon and 

(b) to fit the rectangular coordinates of the moon with ordinary 

polynomials or truncated Fourier series. Approach (a) is an 

approximation if, to facilitate computation, either some of the 

forces acting on the moon are left out of the equations of motion or 

the differential equations are not solved exactly. The tables of the 

position of the moon given in the American Ephermeris were obtained 

by evaluating 1600 terms of a series solution of the complete set 

of lunar equations of motion. This series solution was worked out 

by the American astronomer Brown. 

Mr. R. Hutchinson of the instrumentation Laboratory 

has investigated the feasibility of using Brown's series for on-board 

computation of the moon's position. If all of the 1600 terms worked 

out by Brown are retained, the series is supposed to give the 

position of the center of the moon within a mile for a century or more. 

(Reference 1, page 99. The Naval Observatory workers probably 

feel that their tabulated positions of the moon are more accurate 

than this. In the American Ephemeris the Longitude and Latitude of 

the moon are given to the nearest 0.01 second corresponding to 

0,012 mile and the horizontal parallax of the moon is tabulated to 



0.001 second corresponding to 0.06 mile. The question of the 

accuracy of ephemeris tables needs further clarification.) It was,  

hoped that if high accuracy is only required for a period of a few 

weeks almost all of the terms of Brown ̀ s series could be ignored. 

However, Mr. Hutchinson's calculations indicate that, for 

accuracies on the order of a mile, a prohibitively large number 9 

terms must be retained even to represent the moon's motion over 

short periods of time. Mr. Hutchinson' s conclusions are consistent 

with Dr. Battin's experience in writing the moon-planet subroutine 

used with the Honeywell 800 Computer for preliminary space 'tra-

jectory calculations. This subroutine calculates the moon's position 

using the thirty largest terms from Brown's series, and the errors 

in the lunar positions calculated using the subroutine are on the 

order of 200 miles, although the approximation is this accurate'over 

a period of years. (Reference 2) 

The differential equation approach to calculating lunar 

position can be made feasible for on-board calculation by leaving 

some of the forces acting on the moon out of the equations of motion. 

If all forces, except the earth's attraction are neglected the problem 

becomes particularly simple since the two-body problem can be 

solved analytically. Reference 1 states that the perturbative force 

of the sun on the moon is only 89 times smaller than the earth's 

attraction. The author of reference 1 calculates from this that, after 

three days, the moon's orbit will deviate from an originally oscullating 

two-body trajectory by about 600 miles.' Therefore, the two-body 

approximation is not adequate for primary lunar position calculations 

although it might be useful for interpolation. After the attraction of 

the sun the next largest perturbing force, the force due to the obla.teness 

of the earth, is a million times smaller than the primary earth attract-

ing force according to reference 1. A perturbing force of this magnitude 

would cause a deviation of the order of a mile over a two week period. 

Thus the three body, moon-earth-sun, approximation 'is capable of one 

mile or better accuracy while the differential equations can be handled 



by numerical methods without difficulty. My opinion is, that this 

approach to lunar position calculation is less rough and ready 

than fitting the lunar position data with polynomials and that it IS 

more susceptible to human error but that it is a practical method. 

Approach (b) mentioned above is to apply curve 

fitting methods directly to the ephemeris data, without making 

use of the lunar equations of motion. Since the moon's orbit is 

nearly circular, it was suggested that the moon is position might 

be closely approximated by equations of the form 

x = A + Al sin (wt + 6 ) 1 

.y = B 0 + , B
l sin (wt + i ) 

z = C o 
 + C l  sin (wt + 0 1 ) 

In order to make a rough estimate of the° accuracy of such an 

approximation, assume that the moon's orbit is a two-body 

ellipse whose eccentricity e is 0.055, the mean eccentricity of 

the moon's true orbit, and whose semi-major axis a is 240,000 

miles. Since the motion in a two-body ellipse is periodic, the 

component of the vector from one body to the other can be expanded 

in a Fourier series, 

= b0  + b 1  sin (wt + p 1 ) + b 2  sin (2wt + p 2 ) 	(2) 

The coefficient b 2 
of the second harnionic term should be an 

estimate of the accuracy of equation (1), The coefficients of the 

series (2) are given on page 79 of reference 3. The coefficient of 

the second harmonic term is given by the formula 

, 	1 	1 , 	3 , 	1 	5 
0 2 „:2- 	e -r 	

e 3 	lei 

Plugging in e = 0.055 we find that b 2  = 0. 027, 

the approximation given in equation (1) is 

(0. 027) (240.000) ' = 6,000 miles 



This error estimate may be several times too large, but at 

least it indicates that additional terms are necessary in the 

approximation formulas. Probably the most appropriate 

additiOnal terms are higher harmonic trigonometric terms. 

Since trigonometric,sines aro calculated on the Apollo Guidance 

Computer by evaluating 'a ninth degree polynomial approxima-

tion, it would take less Computer time if polynomial approxima-

tion were used directly.• 

The numerical results on polynomial fitting of 

ephemeris data have already been given. Theoretically, 

according to the Weierstrass approximation theorem, any 

continuous function can be approximated to any desired accuracy 

by a polynomial of sufficiently high degree. From a practical 

standpoint the degree of the polynomial may be prohibitively 

high. It must also be noted that polynomials cannot be evaluated 

without someroundoff error. Chebyshev -proved that for a 

given continuous function there is a unique polynomial of given 

degree with least maximum deviation from the given continuous 

function. When approximating the continuous function with the 

best possible polynomial of degree N, the maximum deviation 

will occur for at least N + 2 values of the independent variable. 

(Under ordinary circumstances the maximum deviation occurs 

exactly N + 2 times), Furthermore, one has the best polynomial 

approximation of degree N in the sense of least maximum 

deviation if he has an Nth degree polynomial approximation whose 

error curve has N + 2 extrema with equal heights and alternating 

signs. Reference 4 discusses this method of polynomial fitting 

and gives many examples. 

The velocity of the moon is needed in on-board 

calculations when changing from earth centered to moon centered 

coordinates and vice-versa. An easy way to obtain the approximate 

velocity of the moon would be to differentiate the approximating 

polynomial. There has not yet been time to test this method 



thoroughly by comparing the numerical derivative of the 

ephemeris data with the derivative of the approximating . 

 polynomials. The error in the value of a velocity component 

obtained by differentiating the approximating polynomial is 

equal to the derivative of the error curve for the approximating 

polynomial. Chords were drawn to the error curves from the 

January 1951 curve fitting run and their slopes were calculated 

to obtain the following values for the maximum velocity errors, 

maximum x coordinate velocity error 

maximum y coordinate velocity error 

- maximum z coordinate velocity error 

maximum vector velocity error 

0.43 mph 

0.35 mph 

0.04 -mph 

0: 54 mph 
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