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Introduction 

The usual method of performing estimation when the 

measurements contain colored (non white) noise is to estimate the 

correlated part of the measurement noise by augmenting it to the 

state. The purpose of this memo is to present a method for 

changing the Kalman gains to account for the colored noise without 

increasing the dimension of the state. While the method presented 

here cannot provide as good an estimate as the augmented state 

technique, it should give better results than not using the colored 

noise information at all. 

The motivation for this analysis is a problem which 

has arisen when performing state estimation in the LM digital auto-

pilot. Slosh, which is not included in the on board dynamical model 

of the vehicle, is appearing in the measurements as additive correlated 

noise. To avoid the additional computation required by the augmented 

state technique, a method is needed to determine how to change the 

preprogrammed Kalman gain vectors which does not increase the 

dimension of the state, but which does recognize that the measurements 

contain correlated noise. Such a method is presented here. 
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Derivation 

The object here is to find the weighting vector, w k, 

which minimizes the mean squared error in the estimate: 
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when the scalar measurement is corrupted by both white and 

correlated noise: 
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From Eq. (1) and the definition of error: 
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The mean squared error is equivalent to the trace of the 

corresponding covariance matrix: 

= ekfk  =tr(Pk) =tr( e kek 	 (4) 

Using Eqs. (2) and (3) plus the fact that the current white noise 

component of the measurement is uncorrelated with all values of 

the error which are based only on past measurements we may 

write: 
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We will now evaluate the term e 'k  ck • Since the estimator is 

linear we may write: 
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where the state transition matrices NI(k, 0) and qi(k, i) involve the 

wi  up to wk _i. The -Vs may be computed from the relationships: 
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where (i+1, i) is the system state transition matrix. 

In writing Eq. (6) it was assumed that there is no 

driving noise. The results to be obtained here would be the same 

if there were driving noise provided that the driving and measurement 

noises are uncorrelated. 
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Using Eqs. (2) and (6) plus the assumption that the 

initial estimation error is uncorrelated with the measurement 

noise for later times there results: 
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Note that s k is not a function of w
k'  Substitution of Eq. (7) 

into Eq. (6) yields: 
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Using Eq. (4) and the commutative property of 

conformable quantities inside the argument of the trace we obtain: 
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The condition for minimum mean squared error in the estimate is 

then: 
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Thus the optimum weighting vector is given by: ..._ 
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Note that this reduces to the familiar Kalman gain vector when there 

is no colored measurement noise. 

Equation (8) is used to update the covariance matrix at 

the k'th measurement time using w k  from Eq. (9). In most real 

time applications, computation of w k  and Pk  by this method would 

only be practical if the Kalman gains were preprogrammed in the 

on board computer as they are in the LM digital autopilot. 

Computation of sk for a Random Sinusoid, 

In this section we will obtain an expression for s k  in 

the special case where the correlated part of the measurement noise 

is a random sinusoid. This closely approximates the effect of slosh 

on the LM attitude measurements. If the additional assumptions of 

stationary statistics, known frequency, and periodic sampling at a 

specified rate are made, recursion formulas for s k  can be obtained. 

Specifically, we will assume: 

c (t) 	A sin (cot + 6) ) 

where A, w, and 8 are independent random variables with the 

following statistics: 
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where f (0) and f( co) are probability density functions. 
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Employing the independence property of A, w and 0 we may write,  

after some trigonometric manipulation: 
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but with the assumed distribution of 8 we have: 
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Using the statistical properties of Ck) to evaluate the remaining 

expectation there results: 
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A limiting process when i=k yields: 
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Substitution of Eq. (10) into Eq. (7) yields the desired expression 

for sk  • " 
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If it is assumed that the statistics are stationary, the frequency is 

known ( w = w0
), and that the sample period is constant (T) Eq. (10) 

becomes: 
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By defining an additional variable: 
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The following set of recursion formulas may be used to determine 

sk :  
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Summary  

A method for changing the Kalman gains to account for colored 

measurement noise when the dimension of the state is held fixed has 

been presented. Equation (9) together with Eq. (7) and the usual 

covariance matrix extrapolation equation are used to determine the 

new gains. The covariance matrix is updated according to Eq. (8). 

Equation (12), or in a more restrictive case Eqs. (13) and (14), can be 

used to compute sk  for those applications where the correlated noise 

is random sinusoid. 


