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The attitude of the descent LEM is controlled by firing reaction jets 

and by gimballing the descent engine. Since there is no fuel penalty when 

using the gimbal, maximum use should be made of the gimbal in prefer-

ence to the reaction jets. A control policy which might prove useful here 

is the time-optimal bang-bang control for the indicated triple-integral plant. 

The basic differential equation relating a choice of gimbal drive u to 

the deviation of the vehicle attitude 9 from the desired attitude 0 d is 

3 d 0 FLR  
3 

dt 

(1) 

where 0 = 9v - d' F is the thrust, L is the distance from the engine gim-

bal axis to the vehicle center of mass, R is the gimbal drive constant angu-

lar rate, and I is the moment of inertia of the vehicle. The control signal 

u can take on the values +1, 0, or -1. These relationships are illustrated 

in Fig. 1. Note for Eq. (1) to be true the third derivative of the desired 

attitude must be zero. 

We neglect the time variation of F, L, and I. Furthermore we assume 

that the deviation state variables U, 5, and 0 are available to the controller 

with no measurement noise or estimation error. We can then derive the con-

trol program which drives the vehicle attitude into alignment with the desired 

attitude in the minimum possible time. It will be shown that this time optimal 
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control program is the following memoryless nonlinear function of the pre-

sent state: 

1/3 
I 

FLR 

c2 d20 dO 
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3/2 
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] 
1 

3 	1 2 	2 z  

This control program in theory will bring any initial state to the origin using 

no more than two reversals of the control signal. In practice a limit cycle 

exists whose amplitude depends on the choice of computer sample rate. 

To simplify the notation in this memo, we re-write Eq. (1) in non-

dimensional form. We define the non-dimensional time variable T to be 

where 

t 
T = — 

C 

1/3 

(3) 

c  
FLR 

sec. 	 (4) 

We define the three non-dimensional state variables to be 

	

2 d
2

0 	 de 
= c— , X

1  C 
	 x2 

	

dt2 	 dt 
(5)  

Then the non-dimension set of first order equations equivalent to Eq.(1) is 

1
1 

= u 

x 2  = X 1  
X 3 = X2 

c = 

X 1 = 

( 2)  

(6)  
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where the dot indicates differentiation with respect to T. This equivalent 

system is illustrated in Fig. 2. 

2. A Necessary Condition for Optimality  

We wish to minimize the cost functional 

T= 5 1  1 dr 	 (7) 
0 

The Hamiltonian is the sum of the integrand in Eq. (7) plus the adjoined 

differential Eqs. (6). 

H = L+<p, X> 

(8) 
H = 1 + pi  u + p2 	+ p3  x2  

The time derivative of the adjoint vector p is the negative of the gradient of 

the Hamiltonian with respect to the state variables. 

aH _ 
ax 

 

  

132 - -P3 

13 1 = - P2 

The general solution of the adjoint Eq. (9) is 

p = 2 K 3 	2 

p2= 
-K1 - 2K2 7  

p
1 

= K
O + K1 + K2 T

2 

Pontryagin's minimum principle states: a necessary condition that a choice 

of control u be optimum is that the Hamiltonian H be minimized by that choice. 

We have +1, 0, and -1 as admissible control signals. The choice which min-

imizes H is 

u = - sign [pi ] 	 (11) 

Considering Eq. (10) we see that p 1  can change signs never, once, or twice 

depending on the constants. We conclude that the only control sequences that 

could possibly be optimal are 

(9)  

(10)  
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(+1), (-1), (+1, -1), (-1, +1), (+1, -1, +1), ( - 1, +1, -1) 	(12) 

A possible exception to conclusion 12 could occur if p i (T) were zero 

over some finite interval. In such an interval condition 11 would not deter-

mine u. But this will not happen because from Eq. (10), p i (7) = 0 implies 

K
0 
 = K

1 
= K2 

= 0, which in turn implies p
2 

and p
3 are also zero. And from 

Eq. (8), the Hamiltonian must therefore equal unity. This is a contradiction 

because the Hamiltonian is known to be zero along an optimal trajectory of a 

free terminal time problem. 

Thus in searching for the optimal control program, we need consider 

only those programs which will bring any initial state (x 1 , x2 , x3 ) to the 

origin with no more than two reversals of the control signal. Our derivation 

of the optimal control program proceeds by constructing one such program. 

Then the program so constructed is proven to be the only one that exists 

which meets the minimum switching condition. Since it is unique it must be 

the optimum. 

3. Derivation of One Control Program  

Define V
1

+ 
to be the set of all states from which the origin can be 

reached in positive time by applying the single terminal control u = +1. 

Similarly define V 1  to be the set of all states from which the origin can be 

reached in positive time by applying the single terminal control u = - 1. 

Further we define V 1 	 1 to be the union of set V1 + and set V
1 • 

That is V1  is 

the set of all states from which the origin can be reached in positive time 

by applying either u = +1 or u = -1. 

We shall develop an alternate coordinate system for the state space, 

which is more convenient than x1, x 2'  x3  for proving properties. The first 

of these coordinates d 1 
is defined as 

d
1 

= x1 
	 (13) 

An important property of the set V 1  is that states in V 1  may be assigned 

uniquely to V 1
+ 

or V1  according to the sign of the coordinate d 1 . We state 

this as 
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PROPERTY 1: 

If x E V1  and d > 0, then x E V1  

	

1 	1   

Ifx E V1  and d < 0, then x E V 

	

1 	1 	1 

To prove this property, we compute the time derivative of d
1 using Eq. (13) 

and (6) 

	

d
1 

= u 
	

(14) 

It is clear if the control is held constant at u = +1 and if d
1 is initially posi-

tive that d 1 will never be driven to zero. This is illustrated in Fig. 3. Since 

the origin is a state contained in the plane d i  = 0, the origin will never be 

reached. Hence if d
1 

is positive the state can not be in V
1 + . But if the state 

is known to be in V 1 
then it must be in V

1* The proof of the second state-

ment in property 1 is the same. 

We may use property 1 as the basis of a control policy to be applied 

whenever a state is in the set V 1. 

CONTROL POLICY 1 

If x E Vi , then apply u = - sign (d 1 ) 

We need an explicit formula for the set V 1 . We begin by noting that 

the general solution to the system of Eq. (6), in an interval where the con-

trol signal is held constant, is 

xi  = c l  + u T 

	

x2 = c 2  + 	T + —
1 

U T 
2 

2 

x 3 = c 3 
+ c

2 
T + —

1 
C

1 
T

2 
+ —

1 
u T

3 

2 	 6 

The set of all states from which the state c can be reached in positive time 

by applying the constant control u may be generated as 

= C i  - ub 

x2 = c2 - c l
b + 1  —2 

ub2  

x3  = c 3  - c 2 b + —1 
c1 b

2 - —1 ub
3 

2 	6 

0 < b < 00 	 (16) 

(15) 
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In particular the set V 1  is generated by 

1 0<b< oo  
x

2 = — 
2 u1 

b
2 

u = + 1 	
(17) 

1 — 

X3 	6 

—1 
ul 

if we use the first formula in set 17 to eliminate b from the second and third, 

we obtain for the set V
1 

X 3  = -6- X 1  
1 	3 

} 	

= + 1 

	

1 	 (18) 

x2 = —
1 	2 

2 u 1 x1 -00 < x < 00 

And finally, we use property 1 (or control policy 1) to replace u 1  with an 
explicit function of the coordinate d 1 . This gives us for the set V

1 

s l  = sign (d1) 	 (19) 

x i  = - u 1  b 

1 	2 
x2 = - 2  5 1 x

1 

1 	3 x
3 = — 

6 xl 

-00<X,
1 
 < co (20) 

It is clear that the set V
1 is a curve in our three-dimensional state space. 

Define V2 to be the set of all states from which the origin can be 

reached in positive time by applying a control sequence (-1, +1). It is clear 

that the set V 2 may be found by generating the set of all states from which 

some state in the set V
1
+ 

can be reached in positive time by applying the 

control u = -1. Similarly define V 2
+ 

to be the set of all states from which 

the origin can be reached in positive time by applying a control sequence 

(+1, -1). It is clear that the set V 2
+ 

may be found by generating the set of 

all states from which some state in the set V
1 can be reached in positive 

time by applying the control u = +1. We define V 2  to be the union of set V2 

 and set V2
+

• That is V2 is the set of all states from which the origin can 

be reached in positive time by applying either a control sequence (-1, +1) or 

a control sequence (+1, -1). 



We introduce a second coordinate d
2 which is a measure of the dis-

tance of a state from the curve V
1 

d2 = x2 + —1 s
l x

1
2 

2 
	 (21) 

We note from Eq. (20) that a state can be in the curve V 1  only if d2  = 0. 

An important property of the set V 2  is that states in V 2  may be assigned 

uniquely to V2  or V2
+ 

according to the sign of the coordinate d 2 . We state 

this as 

PROPERTY 2: 

If x E V2 
and d

2 
> 0, then x E V2 

If x c V2  and d 2  < 0, then x E V2
+  

To prove this property, we compute the time derivative of d
2 using defini-

tions 21 and 13 with Eqs. (6). 

d2 =(1+ s u)d 
1 	1 (22) 

Suppose we apply the control 

d 1  is negative d 2  is zero and 

where is d2 negative. Hence 

be driven into the surface d 2 

u = +1. Equation (22) then shows that where 

where d 1 is positive d
2 

is positive. Hence no-

no state in a region where d 2  is positive can 

= 0 by applying the control u = +1. This state- 

ment is illustrated in Fig. 4. Now since the curve V 1  is in the surface 

d2 = 0, it is also true that V 1 
can not be reached. Hence if a state is where 

d 2 is positive the state can not be in V 2
+

. But if the state is known to be in 

V2 then it must be in V 2 
, which proves that first half of property 2. The 

proof of the second half is the same. 

We may use property 2 as the basis of a control policy to be applied 

whenever a state is in the set V 2 

CONTROL POLICY 2 

If x E V2, then apply u = - sign (d 2 ) 
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We now wish to develop an explicit formula for the set V 2 . In gene-

rating relations 16 we specify that c is in V 1  and u is given explicitly by 

property 2 (or control policy 2). Thus 

s
2 

= sign (d
2

) 
	

(23) 

x l = c l
+ s b 

x2  = c 2  ci  b - 

=c 3 
 - c2 b + 	c 1  b2 +-1 s 2 b 3 

3 	2 	
1 1 
	6 

0 < b < 00 
(24) 

C E V
1 

Since c is in V1  we may use formula 20 to eliminate c 2  and c3  from Eq. (24). 

In formula 20, s 1 
is the sign of d

1 
(which is c

1 ). If s 2 is positive, then we 

know negative control is required to reach V 1 . We will intersect the curve 

V1  at a c 1  which is in Vi
+
. And in Vi

+ 
 s 1  is negative. Similarly s 2  nega-

tive at x implies s 1 positive at C. So use s
1 = - s 2. The set V2 is now ex-  

pressed as 

= c 1  + s 2  b 

1 	2 	1 	2 
2 = 7  s2  - b - 7  s2  b x 

 

x 3  = c1 3  - s2  c1 2  b + c1 b 2  + s 2  b3 ..  

Use the first formula of relations 25 to eliminate the generating variable 

b from the second and third formulas. The set V 2 is then written as 

0 < b < oo 

(25) 
- oo < c < 00 

2 1 	2 
x =s c - 2 	2 1 	

-s2 
 x

1 
 -00 < c

1 < oo 

s 2  c 1 < s2 
x
l 

< 00 
(26) 

3 	2 	1 	3 
x 3 = c

1 
 -c 1  x + x1  

1 

 

   

The first formula of 26 can be solved for the point c 1 
where a state in 

V2 would be driven into V
1 

1 	2 1/ 2 
c

1 
= — s (s x + x ) 2 2 2 7 1 

The sign of the root in formula 27 has been set to -s 2 . The reason for 

this choice is, as mentioned before, that in regions of V 2  where s 2  is 

(27) 
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negative (that is in V 2 ) the state is driven to the set V i  where c 1  is posi-
tive. And in regions of V2  where s 2  is positive the state is driven into V

1
+ 

 where c
1 
 is negative. We use formula 27 to eliminate c

1  from the second 

formula of 26. This gives us our desired explicit formula for the set V 2 

 which is valid both in V2
° and V2+. 

1 	3- 	2,3/2 x 3  - 	s 2  x1  x2  - s 2  (s 2  x2  + 	x1  ) 

It is clear that, whereas V 1  was a curve, V
2 is a surface in our three di-

mensional space. 

Define V 3
+ 

to be the set of all states from which the origin can be 

reached in positive time by applying a control sequence (+1, -1, +1). Simi-

larly define V 3  to be the set of all states from which the origin can be 

reached in positive time by applying a control sequence (-1, +1, -1). We de-

fine V3 to be the union of set V
3

+ 
and V3 . That is V3 is the set of all states 

from which the origin can be reached in positive time by applying either a 

control sequence (+1, -1, +1) or a control sequence (-1, +1, -1). 

We introduce our third coordinate d 3 which is a measure of the dis-

tance of a state from the surface V 2 

d3  = x 3  + —1  x1 3 + s 2  x1  x2  + s 2  (s 2  x2  + 1  x1
2 

 ) 
3/2 

3 

We note from Eq. (28) that a state is in the surface V 2  if and only if d 3  = 0. 

An important property of the set V 3  is that states in V 3  may be assigned 

uniquely to V3
+ 

or V3 ° according to the sign of the coordinate d 3 . We state 

this as 

PROPERTY 3 

Ifx c V3 and d
3 

> 0, then 
3E c V3  

If x e V3 
 and d 3 

 <0, then
L'

€ V
3

+ 

The proof again follows from the time derivative of the relevent coordinate. 

Using the coordinate definitions 29, 21, and 13 with the system differential 

equations 6 we find 

2 	
1-s

1 

s,2, ) d  2,1/2 }  
d. 3  = (1 + u s 2) {d 2  + (2s 2  - s 1 ) 	d 1  + di  [s 2  d2  + ( 	2  

1 
(30) 

Examining formula 30 in each of four regions of our state space we find 

(28)  

(29)  
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Region I: d 1  >0 (s i  = + 1), d2  > 0 (s 2  = +1 ) 

1 	3 
d

3 
= (1_ + u) (d

2 + 
 I  d1

2  —
2 

+  d
1 N d

2
) 	 > 0 	 (31) 

positive 

Region II: d 1  < 0 (s i  = -1), d 2 > 0 (s 2  = + 1) 

d3  = (1 + u) (d
2 

3  + d
1

2 3  + d
1 
 Nid

2  + d1
2  ) 	> 0 	 (32) 

2  

positive 

Region III: d 1  < 0 (s 1  = - 1), d 2  < 0 (s 2  = -1) 

1 	3 d3 = (1 - u) (d2 2 - —d 1
2 
 + d 1 

t 
 s d ) 	 < 0 	 (33) 

. 2 -  

negative 

Region IV: d i.  > 0 (s 1  = + 1), d2  < 0 (s 2  = - 1) 

3 	3 d
3 = (1 - u) (d 2 - —21

2  —
2 

+  d
l s 2d 2 + d1

2 ) (34) 

negative 

In region I it was obvious that the factor in brackets is positive because 

each term in that factor is positive. It is less obvious in the case of re-

gion II. To prove this in region II we note that the first two terms in the 

factor are positive while the third term is negative. We can compare the 

relative magnitude of the positive terms versus the negative term by squar-

ing both groups 

(d 2  + 3  d1 2)2 
	2  2) 2  vs (-3- d

1 
 Nid

2 
 + d1 2 ) 2  

2 12 	2 	9 	4 	9 	2 	9 d14 d + 	d d + — d vs — d d + — d 
2 	4 1 	2 4 1 	° 4 1 	2 4 1 

Result 36 shows that the positive terms have a larger magnitude than the 

negative term, which proves our assertion that the factor in brackets for 

region II is positive. Similarly in region III it was obvious that the factor 

was negative. And, in region IV a comparison of magnitudes proves the 

factor negative. Now suppose we apply the control u = + 1. Equations(31) 

(35)  

(36)  
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a 
to(34)show that in the four regions d 3  is positive, positive, zero, 

and zero respectively. Since these four regions include all of the state 

space we conclude that for u = + 1 nowhere can d 3  be negative. Hence no 

state in a region where d 3  is positive can be driven to the surface d 3  = 0 

by applying the control u = + 1. And since d 3  = 0 is by definition the sur-

face V2 the same statement applies with respect to V
2 . Thus such a state 

cannot be in V 3
+

. But if the state is known to be in V 3  then it must be in 

V3 , which proves the first statement of property 3. The proof of the 

second statement is identical. 

We may use property 3 as the basis of a control policy to be applied 

when ever a state is in the set V 3° 

CONTROL POLICY 3 

If x E V3, then apply u = - sign (d 3 ) 

We have developed three control policies one of which may be used 

provided we are at a state in V1 , or V2  or V3 . We now claim that every 

state in our state space is contained in one of these three sets of states. 

That is for every initial state there exists a way of driving the state to 

the origin with no more than two control reversals. First we note that 

the coordinate transformation yielding d 1,  d2, and d3 (see definitions 13, 

21, and 29) is defined for all states x. Now if d 3 is not equal to zero, 

does that necessarily imply that a state is contained in the set V 3 ? We 

already proved that if d 3 > 0 then V 2  cannot be reached by applying the 

constant control u = + 1. So we must prove that if we try u = - 1 V, will 
6 . 

be reached without fail. We note from formula 14 that for u = - 1, d 1 is 

always negative. Thus d 1  will eventually become negative and will re-

main negative. We see from formula 22 that d 2  becomes negative as soon 

as d1  goes negative. Thus d 2  will eventually become negative and will 

remain negative. And finally from formula 33, since d 1 and d2 
are both 

negative and the control is negative, d 3  is negative. Thus, any initial 

state where d 3  was positive will be driven into the surface d 3  = 0 by ap-

plying u = - 1. Similarly we can prove that where d 3  is negative, apply-

ing u = + 1 will drive any state into d 3  = 0. Thus we have proved that all 

states where d 3 
is not zero are contained in the set V 3. In the cases 
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where d
3 

= 0 we are by definition on the surface V 2 or the curve V1 . 
But if d 2 

is not zero we cannot be in the curve V 1. 

The above discussion provides a unique method for assigning any 

state to one of the sets V 3,  V2, or V
1 according to the coordinates d 3, 

d2, and d1. We combine this assignment method with the three control 

policies already stated to give an explicit control program, which meets 

the necessary condition that any initial state is transferred to the origin 

with no more than two control reversals: 

EXPLICIT CONTROL PROGRAM 

d1 = x1 

s 1  = sign (d1 ) 

d2  = x2  + 1 1  x1
2 

s 2  = sign (d 2 ) 

1 d3 = x3 + —3x13  + s 2  x1 x 2 + s 2 (s 2 x 2 + 1  x1
2  ) 3/2  

s 3  = sign (d3 ) 

If d3  0, 	 apply u = - s
3 

If d3  = 0, If d 2  0, apply u = - s
2 

If d3 = 0, If d 2 = 0, apply u = - s
l  

4. Proof that the Control Program is Uniquely Optimal  

We know that control policy 3 will drive any state in V 3  to V2 . We 

also proved that the opposite policy could never reach V 2. Thus if at any 

point in V3  we deviate from policy 3 and apply the opposite control, we 

will never reach V 2 
unless we reverse the control and return to policy 3. 

But introducing a reversal in V 3  necessarily implies that the origin will 

not be reached in a way that meets the minimum switching condition. 

Thus any alternate policy in V 3  cannot be an optimal policy. 

On the surface V 2 
we have d

3 
= 0 and d

2 
0. We know that control 

policy 2 will drive any state in V 2  to V1 . But suppose at some point we 

deviate from policy 2 and apply the opposite control. In particular suppose 

(37) 
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we apply u = + 1 where d 2  > 0. We see from formulas 31 and 32 that d 3 

 instantly becomes positive. So the state moves into a region of V3  where 

d
3 

> 0. And with u = + 1 and d3 > 0 the surface V
2 will not be reached 

again unless we reverse the control and apply policy 3. But introducing 

a reversal in V 3 necessarily implies that the minimum switching condition 

cannot be met. Thus any alternate policy to policy 2 in V 2  cannot be an 

optimal policy. 

In the curve V
1 
 we have d

3 
= 0 and d

2 = 0. We know that control 

policy 1 will drive any state in V 1 to the origin. But suppose at some 

point we deviate from policy 1 and apply the opposite control. In particular 

suppose we apply u = + 1 where d 1  > 0. We see from formula 22 that d 2 

 instantly becomes positive, so d2  is driven positive. With u = + 1, and 

both d1 and d 2 positive formula 31 shows that d 3 is positive. Again we 

are in region V3  and a reversal is required if we are ever to reach V 2 . 

Thus any alternative to policy 1 in V 1  cannot be an optimal policy. 

Now since we have proven that no other policies exist, which can 

drive any state to the origin with no more than two control reversals, we 

have proven that our control program is uniquely optimal. 

A typical trajectory driven by the optimal control program is shown 

in Fig. 5. The corresponding waveforms are shown in Fig. 6. 

5. Some Engineering Considerations  

In a practical application it is impossible to time a control reversal 

so that a trajectory is transferred precisely onto the surface V 2 . For 

example in a computer control program the computation delay, between 

the discovery that d 3  has passed zero and the commanding of the required 

control reversal, allows the trajectory to integrate a finite distance past 

the switching surface. Even if the improbable occurred and the control 

was reversed precisely on the analytic surface V 2, the ensuing trajectory 

would soon wander off the analytic surface, because the actual vehicle is 

not perfectly described by the assumed differential equation. Therefore 

we need to program only policy 3. This policy is adequate to bring any 

state sufficiently close to the origin. 
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Suppose the control program is synthesized by a computer which 

only samples the deviation state with a uniform sampling rate AT and 

only makes decisions to reverse the control signal at these instants. In 

this case, after the initial transient dies out, the process will exhibit a 

limit cycle. At one sample time d 3  is found positive so negative control is 

commanded. At the next sample time d 3 has been driven negative so posi-

tive control is commanded. And so forth. We may compute the ampli-

tude of this limit cycle as a function of our choice of sample period AT . 

Suppose d 3  was found negative at a state c and positive control has been 

commanded. From relations 15 the ensuing trajectory will be 

x1 = c 1 + T 

x2  = c 2  + c /  T + 2- T 2 

x3  = c 3  + c 2  T +2  c 1  T 2 + 6 

0 < T < AT (38) 

When T = AT, if we are in the limit cycle, the state will have reached a 

point symmetrically opposite the initial point. That is 

C
1 

= C
1 

+ AT 

C 2  = C 2 
 + c 1  AT + 

c
3 

= c
3 

+ c
2 

AT + 

The solution of the set of Eqs. 39 is 

2- (AT)
2 

1 
•2-  c i  (AT)

2 
 + -6-  (AT)

3 1 (39)  

	

c = - (-41T ) 	c
2 

= , 	c 	— k---1 
1 ,A .7-, 3 

1 	2 ' 	 3 	3 
(40)  

The trajectories in this limit cycle are shown in Fig. 7. It is easily shown 

that the maximum excursion of each component of the state vector is 

xl  = AT x = 1 (AT) 2 — k---, ' 
1 ,AT,3 

x3 = —3 t--2 
(41) 

If we use definitions 3, 4, and 5 we return to the original state variables. 

The maximum values are then given by 

K 	 sec. 3 
FLR 

(42) 
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•• 	At 
= – (—) K 2 ' 

(tt ) 2, = K 3  (
At

)
3 

 2 
(43) 

For an illustration, consider the descent configuration of the lunar ex-

cursion module at minimum inertia and maximum thrust. The numbers 

in this case give a value for the inverse of K of about K -1 
= 1 degree/sec

3  . 

If we choose to exercise the gimbal control program every 2 seconds, 

then the resulting limit cycle will have a maximum acceleration of 1 deg/sec 2
, 

a maximum rate of 1/2 deg. /sec, and a maximum deviation of 1/3 degree. 

By considering the size of the limit cycle we also have a basis for 

choosing a dead-zone for the reaction control system. Namely, if the 

objective of minimizing the use of RCS fuel is to be met, then certainly 

no additional control action should be taken by the RCS control program if 

the state lies in the vicinity of the origin as defined by the magnitude of the 

limit cycle. Only if the vehicle takes a large excursion away from this 

region should RCS impulses be used to help bring the state back to the 

origin. 

The required control program was stated in summary 2. If the 

indicated cube-root in the first formula is wasteful of computer time, 

then the set may be reformulated in terms of K = c
3
. This results in 

the following equivalent control program 

K - 	 FLR 

d2 0 	• d 0 = 
dt2' 	dt ' 

s i  = sign (9) 

• 	1 -2-  s 2  = sign (0+ s 1  K 
2  ) 

1 	•• • 
u = - sign [0+ s- K 2 3 + s 2  K 9 0 + s 2 K

2 (s 2  8+ 1 u  

(4 4) 

0 =0 
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Control 

Program 

Fig. 1 - The assumed dynamics of the desired attitude O d  and the vehicle attitude Ov  

Fig. 2 - An equivalent reduced non-dimensional problem 

Control 
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Program 
x 2  
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d 2 > 0 

u = +1 

= 0 

2 
> 

2 
< 0 	

d 2 = 0 
 

2 

N 
17 

d. = 0 

x2 

2 

Fig. 3 - No state can be driven to the plane d 1  = 0 by applying the constant 
control u = sign (d 1 ) 

x2 

d 1  < 0 

u = -1 

d l = 

d 1 > 0 

u = +1 

d l  = + 1 

Fig. 4 - No state can be driven to the surface d 2  = 0 by applying the constant 

control u = sign (d 2 ) 

d 2 < 0 

u = -1 



In the volume V 

d3  > 0, uopt  = 

Hits the surface V 

control reverses 

Hits the curve V1 
control reverses 

2 
d 2  <'0, uopt  = + 1 

In the surface V 

Fig. 5 - Minimum time recovery from an initial bias acceleration — trajectory 

in state space. 
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Fig. 6 - Minimum time recovery from an initial bias acceleration — waveforms 

in the time domain, 
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Fig. 7 - Limit cycle due to sampled data. 
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