Space Guidance Analysis Memo \#2-66
TO: SGA Distribution
FROM: Roy Beasley
DATE: 21 January 1966
SUBJECT: Some Minor Discrepancies between the performance of the AGC4
Block I Interpreter and its R-467 specifications.

1) LODON

R-467: no pushdown (p. 19).
Actually: pushes down according to present mode
2) NOLOD

R-467: no pushdown (p. 19).
Actually: pushes down according to present mode
3) TSLC

R-467: shift count is stored (p.29).
Actually: complement of shift count is stored
4) SIGN

R-467: ". . . complement MPAC or VAC, which ever is appropriate".
Actually: doesn't work for vectors at all (p.24)
5) BPL

R-467 should read: "If C(MPAC, MPAC +1 , MPAC + 2) $\geq 0 \ldots$. (p.23)
6) ABVAL

R-467 omits fact that $1 / 4 \mid$ Vector length $\left.\right|^{2}$ is DP stored in VAC area locations 28, 29. (p. 28)
7) UNIT
a) R-467: "If a vector has two zero components, the non-zero component is set to $1-2^{-28}$, as in the divide routine." (p.32) Actually: the load indicator is turned on and the contents of VAC are unspecified.
b) R-467 omits facts that $1 / 4$ |Vector length| ${ }^{2}$ is stored in VAC area locations 28, 29; 1/2 |Vector length| is stored in VAC area locations 30, 31 .
8) DDV, BDDV give an oddly patterned overflow indications. (p. 22)

Condition

a) $0 / 0$

OVFIND contents
b) zero divisor

- 1
c) \mid divisor $|\leq|d i v i d e n d|$
$+1$
but same sign
d) \mid divisor $|\leq|$ dividend $\mid+1$ opposite sign

9) $S Q R T$
a) $R-467$: DP result always stored ($p .17$).

Actually: DP or TP stored according to mode prior to execution of SQRT.
b) R-467: ". . . $\sqrt{\alpha}$ in MPAC, MPAC + ." (p. 25)

Actually: $\sqrt{\alpha}$ is an unnormalized 28 bit answer which straddles MPAC, MPAC + , and MPAC +2 。
c) for TP square root, $R-467$ omits fact that $C(M P A C+2)$ is considered only if $\mathrm{C}(\mathrm{MPAC})=0$.
d) R-467 omits facts that SQRT of ($0,-\mathrm{A},-\mathrm{B}$) is zero in DP mode and ($0,0,-\mathrm{B}$) in TP mode.
10) ASIN, ACOS
$R-467$: omits fact that arguments of the form $(\pm 1 / 2, B)$ where $B<1 / 2$ are treated as ($\pm 1 / 2,0$) (p. 24)
11) Pushups:

If the first load address of an equation is a push-down list reference (e. g. the inactive address), then the corresponding interpretive instruction must be a unary type; otherwise the loading mode of the current (binary) instruction will be ignored and the "pushups" will be accomplished according to the storing mode of the previous equation.

