Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

Space Guidance Analysis Memo #1-66

TO:	SGA Distribution
FROM:	T. C. Lu (NAA Technical Rep.)
DATE:	14 January 1966
SUBJECT:	Apollo Spacecraft-Engine Equations and Actuator Load

The purpose of this memo is to present the pitch-plane equations of motion of the combined spacecraft-engine system, and the actuator load versus the spacecraft pitch rate.

Summary

The combined spacecraft-engine system is essentially composed of two rigid bodies, Apollo spacecraft and SPS engine, joined at their pivot point (neglecting the structural flexibility and propellant slosh effects). A set of four equations containing five variables is obtained. The actuator load is computed.

$\mathbf{Results}$

Using Fig. 1 and symbols defined in Table 1, we can write the equations of motion for the two rigid bodies, spacecraft and engine, as follows:

$$m_{s} \ddot{x}_{s} = F_{x}$$

$$m_{s} \ddot{z}_{s} = F_{z}$$

$$I_{s} \ddot{\theta} = -K\delta + M + F_{x} \ell_{x} \sin \theta + F_{z} \ell_{x} \cos \theta$$
(1)

and

$$m_{e} \ddot{x}_{e} = -F_{x} + T \cos (\delta - \theta)$$

$$m_{e} \ddot{z}_{e} = -F_{z} + T \sin (\delta - \theta) \qquad (2)$$

$$I_{e} (\ddot{\delta} - \ddot{\theta}) = -C (\dot{\delta} - \dot{\theta}) - K\delta + M + F_{x} \ell_{e} \sin (\delta - \theta)$$

$$-F_{z} \ell_{e} \cos (\delta - \theta)$$

where

$$\dot{\mathbf{x}}_{e} = \dot{\mathbf{x}}_{s} + \dot{\mathbf{x}}_{se}$$
$$\dot{\mathbf{z}}_{e} = \dot{\mathbf{z}}_{s} + \dot{\mathbf{z}}_{se}$$

(3)

and

$$\dot{\mathbf{x}}_{\mathrm{se}} = \ell_{\mathrm{e}} \left[\sin \left(\delta - \theta \right) \ddot{\delta} + \cos \left(\delta - \theta \right) \dot{\delta}^{2} \right] + \left[\ell_{\mathrm{x}} \sin \theta - \ell_{\mathrm{e}} \sin \left(\delta - \theta \right) \right] \ddot{\theta} \\ - 2 \ell_{\mathrm{e}} \cos \left(\delta - \theta \right) \dot{\delta} \dot{\theta} + \left[\ell_{\mathrm{x}} \cos \theta + \ell_{\mathrm{e}} \cos \left(\delta - \theta \right) \right] \dot{\theta}^{2}$$

$$\ddot{z}_{se} = \ell_{e} \left[-\cos \left(\delta - \theta\right) \ddot{\delta} + \sin \left(\delta - \theta\right) \dot{\delta}^{2} \right] + \left[\ell_{x} \cos \theta + \ell_{e} \cos \left(\delta - \theta\right) \right] \ddot{\theta} - 2 \ell_{e} \sin \left(\delta - \theta\right) \dot{\delta} \dot{\theta} - \left[\ell_{x} \sin \theta - \ell_{e} \sin \left(\delta - \theta\right) \right] \dot{\theta}^{2}$$

$$(4)$$

Equations (1) and (2) consist of six equations containing seven variables; x_s , z_s , θ , δ , M, F_x and F_z . Eliminating F_x and F_z in Eqs.(1) and (2) results in four equations containing five variables, x_s , z_s , θ , δ and M.

Actuator Load

The actuator load for a constant gimbal angle of small value is found by using Eqs. (1) through (4) to be as follows:

$$M = a\dot{\theta}^2 + b\dot{\theta} + c \tag{5}$$

(6)

where

$$a = -\frac{(Q - R) P \ell_x \ell_e}{Q + R}$$
$$b = -\frac{QC}{Q + R}$$
$$c = \left(K - \frac{R P T \ell_x}{Q + R}\right) \delta$$
$$P = \frac{m_s}{m_s + m_e}$$

 $Q = I_{s} + P \ell_{x} (\ell_{x} + \ell_{e})$ $R = \ell_{e} + P \ell_{e} (\ell_{x} + \ell_{e})$

For the spacecraft data given in Report R-533, "A Block II TVC Digital Autopilot Compensation for CSM Spacecraft," the actuator load (M) versus the spacecraft pitch rate ($\dot{\theta}$) for constant gimbal angle (δ) of 0, ±0.1, and ±0.2 rad., is shown in Fig. 2.

Table 1 Glossary of Symbols

Symbols	Definitions
OXYZ	Right-handed orthogonal coordinate system
i, j, k	Right-handed orthogonal unit vectors
O ₁ X ₁ Y ₁ Z ₁	Inertial axes
$O_2 X_2 Y_2 Z_2$	Spacecraft body axes with \mathbf{O}_2 at its mass center
$O_3 X_3 Y_3 Z_3$	Engine body axes with O_3 at the pivot point
0 ₄	Engine mass center
l _x	Distance between O_2 and O_3 , ft
ℓ _e	Distance between O_3 and O_4 , ft
θ	Spacecraft pitch angle, rad
δ	Engine gimbal angle, rad
m _s	Spacecraft mass, slug
m _e	Engine mass, slug
I _s	Spacecraft moment of inertia about its mass center, slug-ft 2
Ie	Engine moment of inertia about its mass center, slug-ft ²
r -s	Spacecraft position vector, $O_1 O_2 = x_s i_1$ + $z_s k_1$, ft.
r e	Engine position vector, $\underline{O_1 O_4} = x_e i_1 + z_e k_1$, ft.
r —se	$\underline{\mathbf{r}}_{\mathbf{e}} - \underline{\mathbf{r}}_{\mathbf{s}}, \ \underline{\mathbf{O}}_{2} \ \underline{\mathbf{O}}_{4} = \mathbf{x}_{\mathbf{s}} \mathbf{e}^{\mathbf{i}}_{1} + \mathbf{z}_{\mathbf{s}} \mathbf{e}^{\mathbf{k}}_{1}, \text{ ft.}$
Ē	Force acted on spacecraft by hinge = $F_x_1^i$ + $F_z_1^k$, lb.
Κ	Hose compliance, ft-lb/rad.
С	"Jet" damping coefficient, ft-lb/rad/sec.
Μ	Actuator moment, ft-lb.
Ţ	Engine thrust, lb.

Figure 1 Apollo Spacecraft and SPS Engine System

