

AnGLO

 GUIDANCE, NAVIGATION

 GUIDANCE, NAVIGATION AND CONTROL

 AND CONTROL}

Submitted by: Mayan, F $*$ date etapate: $Y-12>2$ M. H. HAMILTON, DIR., MISSION PROGRAM DEVEL. APOLLO GUIDANCE AND NAVIGATION PROGRAM

Approved: \qquad Date: $y-13.72$
S. L. COPPS, SKYLARK PROGRAM MANAGER APOLLO GU DANCE AND NAVIGATION PROGRAM

Approved: \qquad R.N RANt Date: $4 / 13 / 72$ R. H. BATTEN, DIRECTOR, MISSION DEVELOPMENT APOLLO GUIDANCE AND NAVIGATION PROGRAM
\qquad Date: /4Q/a2 72 D. G. HOAG, DIRECTOR APOLLO GUIDANCE AND NAVIGATION PROGRAM

Approved: \qquad Date: $78 \leq 72$
R. R. PAGAN. DEPUTYGIRECTOR CHARLES STARK DRAPER LABORATORY
gUIDANCE SYSTEM OPERATIONS PLAN FOR MANNED CM EARTH ORBITAL MISSIONS USING PROGRAM SKYLARK 1

SECTION 2 DATA LINKS

MARCH 1872

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-23890, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract N AS 9-4065.

GUIDANCE SYSTEM OPERATIONS PLAN
 FOR MANNED CM EARTH ORBITAL
 MISSIONS USING PROGRAM SKYLARK 1

SECTION 2 DATA LINKS

Signatures appearing on this page designäte approval of this document by NASA/MSC.

Date: $3 / 20 />2$ Section Chief, Guidance Program Section Manned Spacecraft Center, NASA
Approved: John E. Williams, Jr.
Chief, Simulation and Flight Software Branch
 Manned Spacecraft Center, NASA
Approved: \& Ster
John E. Williams, Jr.
Chief, Simulation and Flight Software Branch Manned Spacecraft Center, NASA
Approved: \& Ster
John E. Williams, Jr.
Chief, Simulation and Flight Software Branch
 Approved: $\underset{\text { James C. Stokes, Jr. }}{\text { Manned Spacecraft Center, NASA }}$ Chief, Flight Support Division Manned Spacecraft Center, NASA

BLANK

BRECESING PAGE BLANK NOT FLLMED

FOREWORD

The Guidance System Operations Plan (GSOP) for Program Skylark 1 is published as separate volumes in five sections:
2. Data Links
3. Digital Autopilots
4. Operational Modes
5. Guidance Equations
7. Erasable Programs

Since the information in Section 1 of the Colossus 2E GSOP is also applicable to the Skylark Program, Section 1 will not be republished for Skylark. Therefore, the reader is referred to R577 Colossus 2E GSOP, Section 1, Revision 2, January 1970. Also, Section 6 will not be published for Skylark.

The changes made to the Skylark GSOP Section 2 were enough to warrant its consideration as a new document. Consequently, it is not being treated as a revision of Colossus 3 GSOP 2. Major deletions, additions, and editorial changes have been made to reflect the scope of the new program. The document has undergone extensive editorial and format changes with a view of making it more useful to the reader. Appendix A contain's a list of PCR's and PCN's whose implementation is reflected in this issue.

The volume is published as a control document governing the structure of Uplink and Downlink programs in Skylark 1. Revisions constituting changes to the Skylark Program require NASA approval.

BLANK

PREciandyg PAGE BLANX NOT FLMED

TABLE OF CONTENTS

Section Page
2.0 Introduction 2-1
2.1 Digital Uplink to CMC (P27) 2-3
2.1.1 CM Liftoff Time Increment 2-6
2.1.1.1 Program 27 Verification 2-6
2.1.1.2 Data Verification and Termination 2-6
2.1.1.2.1 Accept All the Update Data Entered 2-7
2.1.1.2.2 Modify Some or All of the Update Data 2-7
2.1.1.2.3 Reject All the Update Data 2-8
2.1.1.2.4 Effects and Use of "VERB33ENTER' 2-8
2.1.2 CM Contiguous Block Update 2-9
2.1.2.1 VERB71 Data Entry Format 2-9
2.1.2.2 Data Load Requirements by Ground Station 2-10
2.1.2.2.1 Index Value 2-10
2.1.2.2.2 E Memory Address Value 2-10
2.1.2.2.3 Update Data 2-11
2.1.2.3 VERB71 Contiguous Block Update Verification 2-11
2.1.3 CM Scatter Update 2-11
2.1.3.1 VERB 72 Data Entry Format 2-12
2.1.3.2 Data Load Requirements by Ground Station 2-12
2.1:3.3 VERB72 Scatter Update Verification 2-13
2.1.4 CMC Octal Clock Increment 2-13
2.1.5 Use of the Contiguous Block Update VERB 2-14
2.1.5.1 CMC CSM/OWS State Vector Update 2-14
2.1.5.2 CMC Desired REFSMMAT Update 2-16
2.1.5.3 CMC REFSMMAT Update 2-17
2.1.5.4 CMC External Delta V Update. 2-18

TABLE OF CONBENTS (concl'd)
Section2.1.5.5CMC Retrofire External Delta V Update2-19
2.1.5.6 CMC Entry Update 2-19
2.1. 6 Absolute Addresses for UPDATE Program 2-20
2.2
CMC Digital Downlink 2-212.2.1
Erasable Memory Dump Downlist 2-22
2.2.2 Standard Downlists 2-23
2.3 Downlist Formats 2-25
2. 3.1 Downlist Word Order 2-26
2.3.1.1 Powered List 2-26
2.3.1. 2 Coast and Align List 2-31
2.3.1. 3 Rendezvous and Prethrust List 2-36
2.3.1. 4 Entry and Update List 2-41
2.3.2 Alphabetic Reference List 2-46
2. 3.3 Alphabetic Reference List of Entry Shared Registers 2-50
2. 3.4 E memory Reference List 2-51
2.4 Description of Telemetered Quantities 2-552.5Flagbits2-105
2.5.1 Alphabetic Listing of Flagbits and Locations 2-105Flagbit Definitions .2-106
2.6 Effects of Fresh Start (V36) and Hardware Restart on Flagword and Channel Bits 2-135
PCR-PCN Checklist A-1

SECTION 2

DATA LINKS

2. 0 Introduction

This volume, Section 2 of the Guidance System Operations Plan for Manned CM Earth Orbital Missions using Program SKYLARK describes the GNCS Data Links: Digital Uplink to CMC (P27) and CM Digital Downlink for use on these missions.

The material of Section 2 of this GSOP is arranged:
2. 1 Digital Uplink to CMC (P27)
2.2 CMC Digital Downlink
2.3 Downlist Formats
2.4 Description of Telemetered Quantities
2.5 Flagbits
2.6 Effects of Fresh Start (V36) and Hardware Restart on Flagword and Channel Bits

B LANK

Prbceming page blank not flimed

2.1 Digital Uplink to CMC (P27)

By means of the CMC UPLINK, ground control can insert data or issue instructions to the CMC in the same manner that these functions are normally performed by the spacecraft crew in using the DSKY keyboard. The CMC is programmed to accept the following UPLINK inputs:

1. LIFTOFF TIME INCREMENT: Provides ground capability to increment or decrement the CMC clock, OWS and CSM state vector times and TEPHEM (time) with a double precision octal time value, scaled centiseconds $/ 2^{28}$.
2. CONTIGUOUS BLOCK UPDATE: Provides ground capability to update from 1 to 18 consecutive E memory registers in the same EBANK.
3. SCATTER UPDATE: Provides ground capability to update from 1 to 9 nonconsecutive E memory registers in the same or different EBANKs.
4. OCTAL CLOCK INCREMENT: Provides ground capability to increment or decrement the CMC clock with a double precision octal time value scaled centiseconds $/ 2^{28}$.

All inforniation received by the CMC from the uplink is in the form of keyboard characters. Each character is assigned an identifying code number called its character code. Each character code transmitted to the CMC is sent as a triply redundant uplink word preceded by a leading " 1 " bit. Thus, if C is the 5 -bit character code, then the 16 bit uplink word has the form:

$$
1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C}
$$

where $\overline{\mathbf{C}}$ denotes the bit-by-bit complement of \mathbf{C}. (Table 2-1 defines all the legal input keycodes.) To these 16 bits of information the ground adds a 3 -bit code specifying the system aboard the spacecraft which is to be the final recipient of the data and a 3 -bit code Indicating the spacecraft which should receive the information. The 22 total bits are sub-bit encoded (replacing each bit with a 5-bit code for transmission). If the message is received and successfully decoded, the on-board receiver will send back an 8 -bit "message accepted pulse" to the ground and shift the original 16 bits of the uplink word to the CMC ($1 \mathrm{C} \overline{\mathrm{C}} \mathrm{C}$). The leading " 1 " bit causes an interrupt within the $C M C$ after all 16 bits have been shifted from the uplink receiver. During ground testing the count of UPRUPTS and the sum of the C $\bar{C} C$ codes entering the AGC are accumulated in erasable registers, permitting a count and sum-check on data transmitted UPLINK to the AGC. This feature will not be used in flight because the summing of uplink data is disabled.

Any ground command sequence normally transmitted via the uplink may bè duplicated by the astronaut via the keyboard. All reference to uplink words used in

TABLE 2-1

Character	Uplink Word
0	1100000111110000
1	1000011111000001
2	1000101110100010
3	1000111110000011
4	1001001101100100
5	1001011101000101
6	1001101100100110
7	1001111100000111
8	1010001011101000
9	1010011011001001
VERB	1100010111010001
NOUN	1111110000011111
ENTER	1111000001111100
ERROR RESET	1100100110110010
Clear	1111100000111110
KEY RELEASE	1110010011011001
+	1110100010111010
-	1110110010011011

NOTE: It is good operational procedure to end every uplink message with a KEY RELEASE.
this section are in the form transmitted from the uplink receiver to the CMC. Therefore, they do not contain the vehicle or subsystem addresses added by the ground facilities.

During update program (P27) execution, the following registers may be monitored via the P27 Downlink List:

1. UPBUFF - Contains all input data, including index value, ECADR value(s) and update parameters. There are 20 (decimal) UPBUFF registers numbered sequentially from UPBUFF +0 to UPBUFF +19 D where the D indicates decimal notation.
2. UPVERB - Contains second digit of update verb being used, e.g., " 0 " for Verb 70, "1" for Verb 71, etc.
3. UPOLDMOD - Contains value of program interrupted by P27, e.g., 00, 02, or 20 for programs 00,02 , or 20 ; program 27 is inhibited from interrupting any other programs.*
4. COMPNUMB - Contains octal value of number of components to be processed by P27. Once set, it remains fixed during complete update operation.
5. UPCOUNT - Used for indexing UPBUFF. The contents of this register may vary from one (1) to the value contained in COMPNUMB. This register always contains the octal identifier of the parameter that is being loaded.

If the CMC received an improperly coded word from the uplink receiver during the load (i. e., not "1 CCC") it sets BIT 4 of FLAGWRD7 to "one", which is transmitted via Downlink to the ground station. When this occurs, the ground station should correct the transmission by sending the following uplink word:
$10000000000 \quad 00000$
(which clears the INLINK register) and follow this by transmitting "ERROR RESET" (which will set BIT 4 of FLAGWRD7 to zero).** If "CLEAR" is transmitted immediately following "ERROR RESET", the ground station then may begin the corrected transmission with the first word of the 5 octal digits that was being sent when the alarm condition occurred. The "CLEAR" button is used after the "ERROR RESET" to blank the data display register (R1). The ground station should then continue the update by using UPCOUNT to indicate the specific parameter being processed and resume the update function by re-transmitting the parameter beginning with the first octal character.

[^0]If the ground wishes to continue loading without transmitting the "CLEAR" code it must determine which character was in error when failure occurred, and resume uplink transmission from the point of failure. This may be determined by monitoring the display in R1 as well as the contents of UPCOUNT.

This program may be entered only from P00, P02, or P20 Option 1, 2, or 5 for the CM. If the CMC is not in one of the programs indicated above when any update VERB is sent uplink, the "Operator Error" lamp will be illuminated, the uplink activity light will be turned "OFF" and the computer will ignore the request, via the specified update VERB, to transfer control to P27.

2.1.1 CM LIFTOFF TIME INC REMENT

To initiate a double precision LIFTOFF octal time increment the ground station transmits "VERB70ENTER".

2.1.1.1 Program 27 Verification

The ground station should then await confirmation via Downlink that the CMC is in Program 27.

If P27 is entered, the CMC puts the old program number in UPOLDMOD, sets UPCOUNT to "one", selects the P27 Downlink List for Downlink transmission and flashes V21N01 which requests a data load for UPBUFF +0 .

If P27 is entered for a Verb 70 update, 0 is placed in UPVERB and 2 is placed in COMPNUMB. Following P27 verification and confirmation of UPVERB and COMPNUMB sent via Downlink, the ground station should transmit the double precision octal time XXXXX ENTER XXXXX ENTER, where time is in centiseconds sealed 2^{-28}. A negative time value (decrement) should be transmitted in one's complement form. It should be noted that UPCOUNT is incremented by 1 after the ENTER following the most significant part of the double precision time. P27 uses the contents of UPCOUNT to calculate the next UPBUFF location for the V21N01.

2.1.1.2 Data Verification and Termination

After the final ENTER associated with the last update has been transmitted, P27 flashes V21N02 which is a request to the ground station to verify all the update data and to perform one of the following functions:

1. Accept all the update data entered
2. Modify some or all of the update data
3. Reject all of the update data

2.1.1.2.1 Accept All the Update Data Entered

If the ground station verifies that the content of the UPBUFF registers is correct, it should transmit "VERB33ENTER" to signal P27 to process the update data. For the Verb 70 update, P27 inverts BIT 3 of FLAGWRD7 and determines if the State Vector data is being used by the orbital integration routine. If so, further P27 instruction executions are delayed (P27 dormant) until the integration routine is complete. A display of " 27 " in the program lights, along with a ground verification that BIT3 of FLAGWRD7 has been inverted and that the operator error light is "OFF", should indicate to the operator that the completion of P27 is temporarily being delayed.

After P27 is re-activated or if it initially finds that the integration routine is not in use, it will inhibit other routines from using State Vector data and complete the data verification requirements for the specific update Verb in use. (For each Verb, see appropriate verification section.)

2.1.1.2.1.1 Verb 70 Double Precision Time Verification

Program 27 verifies that the double precision octal time can be subtracted from the CMC clock without causing overflow. (For this operation two of the UPBUFF registers, UPBUFF +18 D and 19D, are used as temporary buffers for TIME2 and TIME1.) If the double precision input time can be subtracted from the CMC clock without causing overflow, P27 proceeds to increment TEPHEM and decrement the CMC clock, the CSM State Vector time, and the OWS StateVector time. Program 27 will then turn the uplink activity light "OFF", replace the downlink list code in DNLSTCOD with the code for the previous program, release the State Vector data for other routines, and reinstate the previous program.

If, on the other hand, an overflow would occur, P27 will leave the CMC clock intact and turn the operator error light "ON". It will then turn the uplink activity light "OFF", replace the downlink list code in DNLSTCOD with the code for the previous program, release the State Vector data, and reinstate the previous program.

2.1.1.2.2 Modify Some or All of the Update Data

If during the verification time some of the UPBUFF registers are found to be in error, the ground station may make corrections by either of the following methods:
a. Individual parameters in UPBUFF +0 to UPBUFF +19 D may be
changed by sending a two digit octal identifier followed by the ENTER code. For example, if input word 2 (UPBUFF+1) required change, the ground station would transmit "02ENTER". This causes P27 to display the UPBUFF+1 address in $R 3$ and flash V21N01, requesting a new octal data load from the ground. After transmission of the data and its ENTER code, P27 repeats the V21N02 flash to request data acceptance, modification or rejection (section 2.1.1.2). NOTE: If the octal identifier is ≤ 0 or $>$ COMPNUMB, P27 will continue the V21N02 flash and completely disregard the value just entered. It should also be noted that the contents of UPCOUNT is never changed during line by line correction.
b. If several parameters are to be modified, the ground station may change each separately as in step "a" above, or it may choose to terminate and re-initiate the load. To terminate the load the ground must transmit "VERB34ENTER" which will cause the CMC to return to the program it was in before the update was initiated. (P27 turns the uplink activity light "OFF", and switches to the previous Downlink list before returning control to the other program.) To resume its update the ground station would re-transmit the update VERB followed by the complete update load.

2.1.1.2.3. Reject All the Update Data

Update data may be rejected at any time by terminating a load. This is accomplished with the VERB34ENTER sequence described in part " b " of section 2.1.1.2.2.

2.1.1.2.4 Effects and Use of "VERB33ENTER"

1. During data loads and prior to the V21N02 flash, transmission of VERB33ENTER will be ignored by P27.
2. During V21N02 flashing, transmission of VERB33ENTER will initiate the procedure described in section 2.1.1.2.1.
3. If line by line correction is initiated (section 2.1.1.2.2), transmission of VERB33ENTER after the octal identifier has been entered will be ignored by P27.

2.1.2 CM Contiguous Block Update

To initiate a contiguous E memory update the ground station should transmit "VERB71ENTER".

Before sending the update data the ground station should perform Program 27 verification as defined in the first three paragraphs of section 2.1.1.1. If P27 is entered, 1 is placed in UPVERB and in UPCOUNT.

The verb 71 data format is defined in section 2.1.2.1 below and the data load requirements are described in section 2.1.2.2.

2.1.2.1 VERB71 Data Entry Format

The VERB71 update data format is as follows (all Es represent ENTERs):
I I E
A A A A E
X X X X X E
X X X X X E

X X X X X E
where:

1. $3 \leq \mathrm{II} \leq 24$ octal. This is the index value used by P 27 to process the update data. The index value represents the total number of numeric quantities to be loaded, including the index value itself, the starting address (ECADR) and the update parameters(s). The minimum value of 3 is for a single update parameter load. A maximum value of 24 octal is allowed since the UPBUFF capacity is a 20 (decimal) register buffer for P27. This value represents a maximum of 18 update parameters in addition to the index count and the starting E memory address.
2. AAAA is the first E memory address (ECADR) of the update block to be processed. Bits 1-8 indicate the relative address ($0-377_{8}$) within the selected EBANK and bits 9-11 identify the desired EBANK (0-7). Also, for one data load operation, all update parameters must ultimately be stored in the same EBANK. Therefore, the starting address and the length of the block must be chosen so that the complete load is contained in the same EBANK; i.e., (bits 8-1 of AAAA) + II-3 must be ≤ 377 octal.
3. XXXXX is octal data which is to be loaded. This data is stored in sequential order in UPBUFF+2 and following; up to UPBUFF+19D. Scaling of the data must be the same as that of the internal CMC registers.

2.1.2.2 Data Load Requirements by Ground Station

Following Program 27 verification (V21N01 flashes with the UPBUFF+0 address displayed in R3) the ground station should enter the update data in the manner described below.

2.1.2.2.1 Index Value

The index value I I should be \in ntered as an octal number and visually verified (displayed in R1) prior to transmitting the ENTER code. This value should be within the specified limits (see part 1 section 2.1.2.1 for format).

If an index value <3 or >24 ortal is erroneously keyed-in followed by the ENTER code, P27 will reject the value and will continue to flash V21N01 until the ground station enters an index value within the specified limits. (Entry of a legal value is indicated when the $\left[J P B U F F^{\prime}+1\right.$ address value is displayed in R3 and UPCOUNT contains a 2).

If a legal index value is keyed-in but is found to be in error (displayed in R1) before the ENTER code is transmitted, the operator may correct his error by depressing the "CLEAR" key and re-transmitting the new index value followed by the ENTER code. A legally entered value is stored in UPBUFF+0 and COMPNUMB. UPCOUNT is incremented by 1 , the next UPBUFF location is computed and V21N01 continues to flash indicating a request for an ECABR load.

If, however, the ground station operator loads a legal index value followed by the ENTER code and then discovers the numeric value to be incorrect (UPBUFF+0 display), then the only means of recovery is to terminate the load (VERB34ENTER) and re-initiate the update VERB. This procedure is necessary since invalid index values cannot be changed if entered in COMPNUMB and will therefore result in an incorrect update if it is not immediately modified.

2.1.2.2.2 E Memory Address Value

The second octal data word to be entered must be the first E memory address (ECADR) of the update data block.

The ENTER code following the ECADR causes P27 to store this value in UPBUFF+1, increment UPCOUNT by 1 , compute the next UPBUFF location and continue the V21N01 flash which requests an update data load.

2.1.2.2.3 Update Data

The update parameters which will be stored in sequential E memory locations beginning with a legitimate E memory address (ECADR), as defined in part 2 of section 2.1.2.1, may be loaded in two separate ways.

1. Each octal value may be individually entered and visually verified (address of data is displayed in R3 and data is displayed in R1) prior to transmitting the ENTER code.

If data is in error the operator may depress the "CLEAR" key and retransmit the correct octal value followed by the ENTER code. This code causes P27 to store the data in.the UPBUFF address specified in R3. If more data follows, UPCOUNT is incremented by 1 , the next UPBUFF location is computed and V21N01 continues to flash.

This method of input allows the ground station to make immediate corrections if data errors are detected and to visually verify that each data word is loaded into its specified E memory location.
2. The second method of input is to transmit all the octal update data as quickly as possible and then perform a visual verification of all the data in the UPBUFF registers as specified in section 2.1.1.2.

2.1.2.3 VERB71 Contiguous Block Update Verification

The last ENTER of the update sequence causes P27 to flash V21N02. This is a request to the ground station to accept, modify or completely reject the data load as specified in 2.1.1.2 sections.

VERB33ENTER also causes P27 to check the validity of the ECADR value stored in UPBUFF+1 (this value must meet the requirements specified in part 2 of section 2.1.2.1). If the ECADR value is illegal, P27 rejects all input data, replaces Program 27 with the previous program value, turns the uplink activity light "OFF", turns the operator error light "ON" and switches to the Downlinklist for the previous program.

A valid ECADR causes P27 to transfer all the update data from the UPBUFF registers into the specified E memory registers, replace program 27 with the previous program value, turn the uplink activity light "OFF", switch to the Downlink list for the previous program and release the State Vector data.

2.1.3 CM Scatter Update
 To initiate an E memory update in non-contiguous E memory locątions the ground station should transmit "VERB72ENTER".

Before sending the update data the ground station should perform Program 27 verification as defined in the first two paragraphs of section 2.1.1.1.

If P27 is entered for a VERB72 update, a 2 is placed in UPVERBand a 1 in UPCOUNT. Following P27 verification the ground station performs this update exactly as described for the VERB71 updates. The differences in these two update verbs are noted in the following section.

2.1.3.1 VERB72 Data Entry Format

The VERB72 update format is defined as follows:
I I E
AAAAE
XXXXXE
AAAAE
XXXXXE

AAAAE
XXXXXE
where:

1. $3 \leq$ I I ≤ 24 octal. The difference between this index value and the VERB71 index value is that this value must always be odd. This is due to the fact that each update parameter must have its specified E memory address. Thus, the index count includes itself and up to 9 pairs of update words. An even number index value, although accepted at this point in the procedure, will cause rejection of VERB72 data as indicated in section 2.1.3.3. Additionally, Program 27 is replaced with the previous program value, the uplink activity light is turned "OFF", the operator error light is turned "ON", the State Vector data is released and the Downlink list is switched for use by the previous program.
2. All A A A As represent the ECADRs. (Each A A A A is the ECADR of the register to be loaded with the $\mathrm{X} \times \mathrm{XXX}$ immediately following.) Note that update data entered via VERB72 may be loaded into different EBANKs.
3. All X XXXXs are in octal and scaled the same as the internal CMC registers.

2.1.3.2 Data Load Requirements by Ground Station

The load requirements of VERB72 are identical to VERB71 (see sections 2.1.2.2 and 2.1.2.2.1 through 2.1.2.2.3).

2.1.3.3 VERB72 Scatter Update Verification

The last ENTER of the update sequence will cause P27 to flash V21N02. This is a request to the ground to accept, modify or completely reject the data load as specified in 2.1.1.2 sections.

VERB33ENTER causes P27 to verify that COMPNUMB is odd. If COMPNUMB is even, P27 will not transfer the data into the specified E memory registers; instead it will turn on the Operator Error Light, turn off Uplink Activity Light, transfer to previous program and downlist.

If, however, COMPNUMB is valid P27 will perform exactly as specified in the third paragraph of section 2.1.2.3.

2.1.4 CMC Octal Clock Increment

To initiate a double precision octal time increment the ground station transmits "VERB73ENTER".

The loading procedure for this update is identical to the VERB70 update defined in section 2.1.1 except that 3 is placed in UPVERB instead of 0 .

If the update is acceptable, it is immediately used to increment the clock (i.e., positive double precision time is added to the clock). No delay is encountered if the orbital integration routine is in use since the CSM and OWS state vector time registers and the TEPHEM register are not modified.

2.1.5 Use of the Contiguous Block Update VERB

VERB 71, defined in section 2.1.2, can be used to perform the following updates:

1. CMC CSM/OWS STATE VECTOR UPDATE
2. CMC DESIRED REFSMMAT UPDATE
3. CMC REFSMMAT UPDATE
4. CMC EXTERNAL DELTA V UPDATE
5. CMC RETROFIRE EXTERNAL DELTA V UPDATE
6. CMC ENTRY UPDATE

In defining each of these updates, it is assumed that the ground station has transmitted VERB71 ENTER and performed Program 27 verification as required prior to transmittal of the index value, ECADR and update parameters. It is also assumed that final verification of each update will be done as specified in section 2.1.2.3.

2.1.5.1 CMC CSM/OWS STATE VECTOR UPDATE

This data consists of a single precision state vector identifier, three (3) double precision components of position, three (3) double precision components of velocity and a double precision time. The identifier (UPSVFLAG) indicates CSM or OWS*:

$$
\begin{aligned}
1 & =\mathrm{CSM} \\
-1 & =\mathrm{OWS}
\end{aligned}
$$

The position and velocity components should be in reference coordinates scaled as follows:

$$
\begin{array}{ll}
\text { Position } & \text { meters } / 2^{29} \\
\text { Velocity } & \text { (meters/centisecond) } / 2^{7}
\end{array}
$$

The time associated with the state vector should be relative to CMC clock zero. The identifier is scaled units $/ 2^{14}$. Time is scaled centiseconds $/ 2^{28}$.

The CMC is a fixed point machine with the point just to the left of the most significant bit.

The scaling indicated above will be sufficient to force the 3 components of position and the 3 components of velocity and time to numbers less than one.

To form the double precision quantities ready for coding and transmission, the scaled magnitudes of time and each component of position and velocity should be expressed as two binary words as follows:

[^1]1st word:

$$
\begin{array}{cccccccccccccc}
0 & X & X & X & X & X & X & X & X & X & X & X & X & X
\end{array} X
$$

2nd word:

| 0 | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2^{-15} | 2^{-16} | 2^{-17} | 2^{-18} | 2^{-19} | 2^{-20} | 2^{-21} | 2^{-22} | 2^{-23} | 2^{-24} | 2^{-25} | 2^{-26} | 2^{-27} | 2^{-28}

Each X above represents a binary bit of the appropriate magnitude, the place value of which is indicated below the corresponding X. Once the magnitude of the component is accounted for in the above 28 X 's, the sign must be considered.

If the component is positive, the words remain as formed; if the component is negative, the " 1 s complement" of the 2 words is used (all 1's are replaced by 0 's and all 0 's by $1^{\prime} \mathrm{s}$.)

The first word is then transformed into a 5 character octal word. The first character is the octal equivalent of the first three bits, the second character is the octal equivalent of the next three bits, etc. This word is referred to as the "most significant part" of data in the text below. Similarly, the second word is transformed into a 5 character octal word which is the "least significant part" of the data. Table 2-1 lists all the uplink characters with their corresponding binary format.

The CMC CSM/OWS STATE VECTOR UPDATE data must be sent in the following sequence:

Octal Identifier	Data Value	Data Definition
1	21_{8}	(index value) ENTER
2	(AAAA) *	(ECADR - UPSVFLAG) ENTER
3	XXXXX	(identifier) ENTER
4	XXXXX	(most sig. part of X position) ENTER
5	XXXXX	(least sig. part of X position) ENTER
6	XXXXX	(most sig. part of Y position) ENTER
7	XXXXX	(least sig. part of Y position) ENTER
108	XXXXX	(most sig. part of Z position) ENTER
11_{8}	XXXXX	(least sig. part of Z position) ENTER

[^2]
where each " A ", " X " and "ENTER" above represent an uplink word.

2.1.5.2 CMC DESIRED REFSMMAT UPDATE

XSMD - XSMD +17 is a 3×3 double precision matrix which represents the Reference to Stable Member Desired Transformation.

The elements of the matrix are scaled, units $/ 2^{1}$.
The following relations must hold:

1. The inner product of any row with itself must equal 0.25
2. The inner product of any column with itself must equal 0.25
3. The inner product of any row with another row must equal 0
4. The inner product of any column with another column must equal 0

The CMC DESIRED REFSMMAT UPDATE must be sent in the following sequence:

Octal Data

Identifier	Value	Data Definition
1	24_{8}	(index value) ENTER
2	(AAAA)*	(ECADR-XSMD) ENTER
3	$\mathbf{X X X X X}$	(most sig. part of Row 1 Col. 1)
4	XXXXX	(least sig. part of Row 1 Col. 1)
5	XXXXX	(most sig. part of Row 1 Col. 2)
6	XXXXX	(least sig. part of Row 1 Col. 2)
7	XXXXX	(most sig. part of Row 1 Col. 3)
108	XXXXX	(least sig. part of Row 1 Col. 3)
11_{8}	XXXXX	(most sig. part of Row 2 Col. 1)

[^3]

2.1.5.3 CMC REFSMMAT UPDATE

REFSMMAT - REFSMMAT +17 D is a 3×3 matrix used to convert between reference coordinates and stable member coordinates. The elements of the matrix are scaled, units $/ 2^{1}$.

The CMC REFSMMAT UPDATE must be sent in the following sequence:

Octal Identifier	Data Value	Data Definition
1	${ }^{24} 8$	(index value) ENTER
2	(AAAA)*	(ECADR - REFSMMAT) ENTER
3	XXXXX	(most sig. part of Row 1 Col. 1) ENTER
4	XXXXX	(least sig. part of Row 1 Col. 1) ENTER
5	XXXXX	(most sig. part of Row 1 Col. 2) ENTER
6	XXXXX	(least sig. part of Row 1 Col. 2) ENTER
7	XXXXX	(most sig. part of Row 1 Col. 3) ENTER
108	XXXXX	(least sig. part of Row 1 Col. 3) ENTER
11_{8}	XXXXX	(most sig. part of Row 2 Col. 1) ENTER
128	XXXXX	(least sig. part of Row 2 Col . 1) ENTER

[^4]| Octal
 Identifier | Data
 Value | | Data Definition |
| :---: | :--- | :--- | :--- |

2.1.5.4 CMC EXTERNAL DELTA V UPDATE

This data consists of three velocity components in local vertical coordinates, and the time of ignition. The scale factors are

1. $\operatorname{DELVSLV}_{x, y, z}$ (meters/centisecond)/2 ${ }^{7}$
2. TIG centiseconds $/ 2^{28}$

The velocity components sent from the ground must be in the local vertical system defined by the CMC-determined, CSM state vector at TIG-30.

The CMC EXTERNAL DELTA V UPDATE data must be sent in the following sequence:

Octal Identifier	Data Value	Data Definition
1	128	(index value) ENTER
2	(AAAA) *	(ECADR - DELVSLV) ENTER
3	XXXXX	(most sig. part of DELVSLV ${ }_{\mathrm{x}}$) ENTER
4	XXXXX	(least sig. part of DELVSLV ${ }_{\mathrm{x}}$) ENTER
5	XXXXX	(most sig. part of DELVSLV ${ }_{\mathrm{y}}$) ENTER
6	XXXXX	(least sig. part of DELVSLV ${ }_{\text {y }}$) ENTER
7	XXXXX	(most sig. part of DELVSLV ${ }_{z}$) ENTER
10_{8}	XXXXX	(least sig, part of DELVSLV ${ }_{z}$) ENTER
11_{8}	XXXXX	(most sig. part of TIG) ENTER
128	XXXXX	(least sig, part of TIG) ENTER

* Refer to paragraph 2.1.6 to obtain the absolute address (ECADR) for this UPDATE.

2. 1. 5.5 CMC RETROFIRE EXTERNAL DELTA V UPDATE

This data consists of the latitude and longitude of the entry target, three velocity components in local vertical coordinates and the time of ignition. The scale factors are:

1. LAT (SPL) degrees/360 (North positive)
2. LNG (SPL) degrees/360 (East positive)
3. DELVSLV $_{x, y, z}$ (meters/centisecond)/2 ${ }^{7}$
4. TIG
centiseconds/2 2^{28}
The CMC RETROFIRE EXTERNAL DELTA V UPDATE date must be sent in the following sequence:

Octal Data
Identifier Value Data Definition
$1 \quad{ }^{16} 8$ (index value) ENTER
$2(A A A A)^{*}$ (ECADR-LAT(SPL)) ENTER
3 XXXXX (most sig. part of LAT (SPL)) ENTER
4 XXXXX (least sig. part of LAT (SPL)) ENTER
5 XXXXX (most sig. part of LNG (SPL)) ENTER
6 XXXXX (least sig. part of LNG (SPL)) ENTER
7 XXXXX (most sig. part of DELVSLV ${ }_{x}$) ENTER
10_{8} XXXXX (least sig. part of DELVSLV ${ }_{x}$) ENTER
11_{8} XXXXX (most sig. part of DELVSLV ${ }_{y}$) ENTER
${ }^{12} 8$ XXXXX (least sig. part of DELVSLV ${ }_{8}$) ENTER
${ }^{13} 8$. XXXXX (most sig. part of DELVSLV ${ }_{z}$) ENTER
148 XXXXX (least sig. part of $\mathrm{DELVSLV}_{z}$) ENTER
${ }^{15} 8$ XXXXX (most sig. part of TIG) ENTER
${ }^{16} 8$ XXXXX (least sig. part of TIG) ENTER

2.1.5.6 CMC ENTRY UPDATE

This data consists of the latitude and longitude of the entry target. The scale factors are:

1. LAT (SPL) degrees/360 (North positive)
2. LNG (SPL) degrees/360 (East positive)

The CMC ENTRY UPDATE data must be sent in the following sequence:

[^5]| Octal Identifier | Data Value | Data Definition |
| :---: | :---: | :---: |
| 1 | ${ }^{06} 8$ | (index value) ENTER |
| 2 | (AAAA) ${ }^{\text {* }}$ | (ECADR-LAT(SPL)) ENTER |
| 3 | XXXXX | (most sig. part of LAT (SPL)) ENTER |
| 4 | XXXXX | (least sig. part of LAT (SPL)) ENTER |
| 5 | XXXXX | (most sig. part of LNG (SPL)) ENTER |
| 6 | XXXXX | (least sig. part of LNG (SPL)) ENTER |

2.1.6. Absolute Addresses for UPDATE Program

01501	UPSVFLAG	CSM/OWS State Vector Update
00306	XSMD	DESIRED REFSMMAT UPDATE
01717	REFSMMAT	REFSMMAT UPDATE
03404	DELVSLV	EXTERNAL DELTA-V UPDATE
03400	LAT(SPL)	RETROFIRE EXT DELTA-V OR ENTRY UPDATE

[^6] this UPDATE.

2.2 CMC Digital Downlink

The downlink format is controlled by a CMC program. This program is entered on an interrupt caused by an "endpulse" from the telemetry system. The program loads the content of the next two 16 -bit CMC registers that are to be transmitted into channels 34 and 35 . The loading is accomplished according to the format described in the next paragraph.

Each downlist word consists of 33 significant bits plus seven repetition bits. The first bit is a "word order code bit". The next 16 bits comprise the contents of one 16 -bit CMC register (15 bits of data followed by an odd parity bit). The final 16 bits are the content of another 16 -bit CMC register. Since the spacecraft downlink is organized in 8-bit segments, seven "filler bits" are transmitted to follow the 33 bits outlined above in order to use all the downlink space available. These filler bits are repetitions of the first seven bits of the first CMC register transmitted.

Thus the form in which the content of the two CMC registers is arranged for transmission as a sequence of 40 CMC downlink bits (represented by X) on channels 34 and 35 may be pictured as shown in the table below:

Table Showing CMC Downlink Bits

The first word in any list contains the "ID" and synchronization registers and has a word order code bit of zero. (All other downlink words have word order code bits of one except word 51 on the standard downlists which has a word order code bit of zero to indicate the mid-point of the standard downlists.) The ID register marks the beginning of a list and identifies the list being transmitted. The synchronization (sync) register always contains the same sixteen bits (1111110111000000) which are used to synchronize remote site downlink processing equipment.

The standard CMC downlink lists contain 100 downlink words (200 CMC regis ters). The CMC digital downlink is transmitted at a rate of 50 words per second at
high bit rate and 10 words at low bit rate. Therefore, transmission of the standard list requires two seconds at high bit rate and ten seconds at the low bit rate.

2.2.1 Erasable Memory Dump Downlist

Upon reception of a Verb 74 Enter from the keyboard or the uplink, the computer will interrupt the nominal downlist being transmitted and start transmitting the e rasable memory dump downlist. The first word of the erasable memory dump downlist is an ID word, 01777_{8} and the same pattern of syncn bits as on the standard list. The word order code for this downlink word will be 0. The next 129 downlink words have word order codes of one and make up the remainder of the 130 word dump downlink list. Word 2 of this list (i.e., the word following the ID word) contains a "packed indicator" code in the first register and the contents of TIME1 in the second register. TIME1 is the least significant clock register and is described later in this section under the standard lists. The "packed indicator" identifies which erasable bank and which pass through that bank is contained in the present list as follows:

Bits 15 \& 14 - zero
Bits $13 \& 12-00$ for 1 st pass 01 for 2 nd pass

Bits 11 thru 9 - gives EBANK number
Bits 8 thru 1 - zeros
The next 128 downlink words (256 registers) are the contents of the erasable bank indicated in the packed indicator.

After transmitting the 130 downlink word list (one ID word, one packed indicator and time word, and 128 data words), the downlink will transmit the ID word again, followed by the packed indicator, followed by the contents of the next erasable bank etc. In this way, one complete pass through erasable memory will require 20.8 seconds for high bit rate, and 104 seconds for low bit rate. The computer will make two complete passes through the complete erasable memory before returning to the standard downlist.

NOTE: After completion of the erasable dump downlist the current downlist will be started at the ID word. Since no programs are interrupted during the transmission of the erasable memory downlist, some of the registers transmitted may have different contents on different passes through the erasable.
2.2.2 Standard Downlists

For this mission there are four standard downlists, each associated with a set of programs, as follows:
A. The Powered List is transmitted during

11 Earth Orbit Insertion (EOI) Monitor
40 SPS Thrust
41 RCS Thrust
47 Thrust Monitor
48 Rendezvous Thrust Monitor
61 Entry Preparation Program
B. The Coast and Align List is transmitted during

00 CMC Idling
01 Prelaunch Initialization
02 Gyro Compassing
03 Optical Verification of Gyro Compassing
06 CMC Power Down
07 System Test
50 ATM Orientation Determination
51 IMU Orientation Determination
52 IMU Realign
53 Backup IMU Orientation Determination
54 Backup IMU Realign
55 ATM Star Tracker Gimbal Angle
C. The Rendezvous and Prethrust List is transmitted during

20 Universal Tracking
21 Ground Track Determination
25 Contingency VHF Range Rate
29 Time of Longitude Program
30 External ΔV Maneuver Guidance
31 NC1 Targeting
32 NC2 Targeting
33 NCC Targeting
34 NSR Targeting

35	TPI Targeting
36	TPM Targeting
37	Rendezvous Final Phase
38	Plane Change Targeting
77	CSM Velocity Vector Update
The Entry and Update List is transmitted during	
27	CMC Update
62	CM/SM Separation and Pre-entry Maneuver
63	Entry Initialization
64	Post 0. 05 G Entry Mode
65	Up Control Entry Mode
66	Ballistic Entry Mode
67	Final Entry Mode

The list switching is accomplished as follows: Whenever a new program is entered, it sets up a request for its list by placing the appropriate code in the register, DNLSTCOD. The downlink program will transmit the complement of this code as the ID and use the code to select the appropriate list. The complete list is then transmitted even if DNLSTCOD is changed during it. This procedure is, of course, not true for the erasable memory dump downlist (see Section 2.2.1), which completes its required number of passes irrespective of other programs. A computer "restart' (hardware), or "fresh start" will immediately cause the telemetry list to start with word \#1. A "restart" (hardware) will begin the list whose code is in DNLSTCOD but a "fresh start" will always set DNLSTCOD to transmit the Coast and Align list. An erasable memory dump, if in process, will be interrupted in both cases, and regular downlist transmission resumed.

Since certain data on the standard downlink lists are only meaningful when considered in multiregister arrays and since the programs which compute these arrays are not synchronized with the downlink program, a "snapshot" is taken of these words so that changes in their values will not occur while these arrays are being transmitted to the ground. When a "snapshot" is taken several words are stored at the time the first word is transmitted. The other words in the downlist are read at the time of transmission and therefore the only time homogeneity for them is between the two registers making up a single word. The SKYLARK downlists have the following "snapshots":

Powered List
Coast and Align List
Rendezvous and Prethrust List
Entry and Update List
words 2-8, 9-13, 30-31, 52-58, 59-63 words 2-8, 9-13, 52-58, 59-63 words 2-8, $9-13,23-28,52-58,59-63$ words 2-8, 9-13, 52-58, 59-63

2. 3 Downlist Formats

The contents of the downlists are listed in this section for reference purposes.

Section 2.3.1 lists by word order each of the four downlists. The E memory address (ECADR) of the downlinked quantities is given.

Section 2.3.2 lists, in alphabetical order by mnemonic, all downlinked items and their ECADR's.

Section 2.3.3 lists, in alphabetical order by mnemonic, all EN'TRY shared downlink items and their ECADR's.

Section 2.3.4 is a chart listing all downlinked items in order by ECADR. Each entry contains the mnemonic of the item and the downlist word number(s) in which it appears. The input/output channels and those downlist registers which contain undefined (meaningless) information appear at the end of the chart.

2.3.1
 Dowrlirt Word Order

2.3.1.1 Powered List

Word \#	Mnemonic	ECADR	
1 A	I. D. WORD		(OCTAL 77774)
1 B	SYNCH BITS		(OCTAL 77340)
2-4	RN	01021	CSM STATE VECTOR (POSITIONI
5-7	VN	01027	CSM StATE VECTOR (VELOCITY)
8	PIPTIME	01035	CSM STATE VECTOR TIME
9 A	coux	00032	ACTUAL x CDU ANGLE
9 B	cour	00033	ACTUAL Y COU ANGLE
10 A	couz	00034	ACTUAL 2 CDU ANGLE.
108	CDUT	00035	OPTICS TRUNNION
11	ADOT	03162	ADOTS ROLL OR OGARATE
12	ADOT +2	03164	ADOTS PITCH DR OMEGA B PITCH
13	ADOT + 4	03166	ADOTS YAW OR OMEGA B YAW
14 A	AK	03125	\times ATtitude error
148	AKI	03126	Y ATTITUDE ERROR
15A	AK2	03127	2 ATTITUDE ERROR
15B	RCSFLAGS	03130	RCS FLAGS
164	THETADX	03223	
16 B	THETADY	03224	
17 A	THETADZ	03225	
17 B			ARBAG

- Powered List (Continued)

Word \#	Mnemonic	ECADR
18	TIG	03412
194	SLOPE	03305
198	ADB	03306
20A	DAPDATR 3	03070
208	CH5FAIL	03071
214	CH6FAIL	03072
218	dKRATE	03073
22 A	DKDB	03074
22 B	WHICHDAP	03075
23	TGO	03427
24	PIPTIMEI	01076
25	DELVX	01304
26	DELVY	01306
27	DELVZ	01310
284	PACTOFF	03010
28 B	YACTOFF	03011
29A	PCMD	03252
298	YCMD	03253
30A	CSTEER	03662
30 B	RM	03663
31	MARK TIME	01115
32	FIXTIME	01333
33	DVTOTAL	03425
34-39	REFSMMA T	01717
40-44	FLAGWRDO	00074

FLAGWORDS 0 THRU 9

Word \#	Mnemonic	ECADR	
45-50	DSPTAB	01216	DSPTAB THRU DSPTAB + 110
51	TIME2	00024	AGC TIME
52-54	R-OTHER	01703	OWS STATE VECTOR (POSITION)
55-57	V-OTHER	01711	OWS StATE VECTOR (VFlocity)
58	T-OTHER	01642	OWS STATE VECTOR TIME
59A	CDUX	00032	ACTUAL X CDU ANGLE
59 B	CDUY	00033	actual y cou angle
60A	COUZ	00034	ACTUAL 2 CoU Angle
608	CDUT	00035	CPTICS TRUNNION
61	ADOT	03162	ADOTS ROLL OP OGARATF
62	$A D O T+2$	03164	ADOTS PITCH OR OMEGA B PITCH
63	ADOT +4	03166	ADOTS YAW OR OMEGA B YAW
64A	$A K$	03125	X Attitude error
64B	AKI	03126	y ATTITUDE ERROR
65A	AK2	03127	2 ATTITUDE ERROR
658	RCSFLAGS	03130	RCS FLAGS
664	THETADX	03223	
66B	THETAOY	03224	
674	THETADZ	03225	
678			GARBAGE
684	RSBBQ	01432	BBANK AT RESTART
688	RSBBQ +1	01433	Q AT RESTART
69 A			GARBAGE
698	CHAN77		CHANNEL 77
70A	C31FLWRD	00.373	

Powered List (Continued)

Word \#	Mnemonic	ECADR	
70B	FAILREG	00374	
714	FAILREG +1	00375	
71 B	FAILREG + 2	00376	
72A	cous	00036	OPTICS SHAFT
72 B	PIPAX	00037	
73 A	PIPAY	00040	
73 A	PIPAL	00041	
74	ELEV	03640	ELEVATION ANGLE.
75	SVEC + 2	03753	
76	TET	01516	
77 A	FLGWRD10	00106	
778	FLGWRDII	$0 C 107$	
78	tevent	01014	
79 A	PCMD	03252	
798	YCMD	03253	
80A	OPTMODES	01327	
80 B	holdflag	01330	
814	LEMMASS	03121	
818	CSMMASS	03122	CSM MASS
82A	DAPDATR1	03114	
82 B	DAPDATR2	03115	
834	ERRORX	C3220	
838	ERRORY	03221	
84 A	ERRORZ	03222	
848			GARBAGE

Powered List (Continued)

Word \#	Mnemonic	ECADR	
85	WBODY	03154	WBODY OR OMEGAC (ROLL)
86	W800Y +2	03156	WBODY OR OMEGAC (PITCH)
87	WBODY +4	03160	WBODY OR OMFGAC (YAW)
B8A	REDOCTR	01276	
88 B	THETAD	01277	DESIRED FINAL COU X
89A	THETAD +1	01300	DESIRED FINAL CDU Y
898	THETAD +2	01301	DESIRED FINAL CCU z
904	I MODES30	01323	
908	I MODES33	01324	
914	DSALMOUT		CHANNEL 11
918	CHAN12		CHANNEL 12
92 A	CHANI 3		CHANNEL 13
92 B	CHAN14		CHANNEL 14
934	CHAN3O		CHANNEL 30
9.3B	CHAN31		CHANNEL 31
94A	CHAN32		CHANNEL 32
948	CHAN33		CHANNEL 33
95-97	VGTIG	03771	
98-100	DELVSLV	03404	

Word \#	Mnemonic	ECADR	
1 A	I. D. WORD		(OCTAL 77777)
18	SYNCH BITS		(OCTAL 77340)
2-4	RN	01021	CSM STATE VECTOR (POSITIJN)
5-7	VN	01027	CSM STATE VECTOR (VELOCITY)
8	PIPTIME	01035	CSM STATE VFCTOR TIME
9 A	coux	00032	AC TUAL X CDU ANGLE
9 B	cour	00033	ACTUAL Y COU ANGLE
10 A	CDUZ	00034	ACTUAL 2 CDU ANGLE
108	COUT	00035	OPTICS TRUNNION
11	ADOT	03162	ADOTS ROLL OR OGARATE
12	ADOT + 2	03164	ADOTS PITCH OR DMEGA B PITCH
13	ADOT +4	03166	ADOTS YAW OR TMEGA B YAW
14A	AK	03125	X attitude feror
148	AK1	03126	y attituoe error
15A	AK2	03127	2 ATTITUDE ERROR
158	RCSFLAGS	03130	RCS FLAGS
16A	THETADX	03223	
16 B	THETADY	03224	
17 A	THETADZ	03225	
17B			GARBAGE

Werd \#	Mnemonic		ECADR
18	TIG		03412
19 A	BESTI		00302
19 B	BESTJ		00303
20	MARKDOWN		03654
21 A	MARKDOWN		03656
218	MARKDOWN	$+3$	03657
224	MARKDOWN	+4	03660
- 22 B	MARKDOWN	$+5$	03661
123A	MARKDOWN	$+6$	03662
238			
24	MARK2 DWN		03460
254	MARK2 OWN	+2	03462
25B	MARK2DWN	$+3$	03463
264	MARK2DWN	+4	03464
268	MARK2DWN	+5	03465
27 A	MARK2OWN	$+6$	03466
278			
28	HAPOX		02203
29	HPERX		02205
30A	Pactoff		03010
30B	YACTOFF		03011
31-33	VGTIG		03771
34-39	REFSMMAT		01717
40-44	FLAGWRDO		00074
45-50	DSPTAB		01216

```
STAR I.D. 1
    STAR IOD. 2
    OPTICS MARK TIME I
    Y CDU ANGLE l
    OPTICS SHAFT ANGLE I
    Z CDU ANGLE 1
OPTICS TRUNNION ANGLF I
x CDU ANGLE 1
GARBAGE
OPTICS MARK TIME 2
Y CDU ANGLE ?
OPTICS SHAFT ANGLE 2
Z CDU ANGLE 2
CPTICS TRUNNION ANGLE 2
x COU ANGLE 2
GARBAGE
```

APOGEE
PERIGEE
FLAGWORDS 0 THRU 9
OSPTAB THRU DSPTAB +11D

Word_\#	Mnemonic	ECADR	
51	TIME2	00024	AGC TIME
52-54	R-OTHER	01703	OWS StATE VECTOR (POSITION)
55-57	V-OTHER	01711	OWS State vector ivelocity
58	T-OTHER	01642	CWS STATE VECTOR TIME
594	coux	00032	actual X CDU ANGLE
59 B	cour	00033	ACTUAL Y CDU ANGLE
60 A	couz	00034	ACTUAL 2 COU ANGLE
608	COUT	00035	OPTICS TRUNNION
61	ADOT	03162	ADOTS ROLL OR OGARATE
62	$A D O T+2$	03164	ADOTS PITCH OR OMEGA B PITCH
63	ADOT +4	03166	ADOTS YAW OR BMEGA B YAW
64 A	OPTION1	00770	
648	OPT I ON2	00771	
65	TET	01516	
664	THETADX	03223	
668	THETADY	03224	
674	THETADZ	03225	
678			garbage
684	RSBBQ	01432	BBANK AT RESTART
68 B	RSBB Q + 1	01433	Q AT RESTART
69 A			garbage
698	CHAN77		CHANNEL 77
70A	C31FLWRD	00373	
70B	FAILREG	00374	
714	FAILREG +1	00375	

Word_\#	Mnemonic	ECADR			
71 B	FAILREG + 2	00376			
72A	CDUS	00036	OPTICS	SHAFT	
$72 B$	PIPAX	00037			
73A	PIPAY	00040			
73 B	PIPAZ	00041			
74	OGC	02757			
75	IGC	02761			
76	MGC	02763			
774	FLGWRDIO	00106			
778	FLGWRDI 1	00107			
78	tevent	01014			
79	LAUNCHAL	02633			
804	OPTMODES	01327			
808	HOLDFLAG	01330			
814	LEMMASS	03121			
81 B	CSMMASS	03122	CSM MASS		
82 A	DAPDATR1	03114			
828	DAPDATR2	03115			
83 A	ERRORX	03220			
83 B	ERRORY	03221			
84 A	ERROR 2	03222			
848			GARBAGE		
85	WBODY	. 03154	WBODY OR	OMEGAC	(ROLL)
86	WBODY +2	C3156	WBCDY OR	OMEGAC	(PITCH)
87	WBODY + 4	03160	WBOOY OR	OMEGAC	(YAW)

Coast and Align List (Continued)

2.3.1.3 Rendezvous and Prethrust List

Word \#	Mnemonic	ECADR	
1 A	I. D. WORD		(OCTAL 77775)
1 B	SYNCH BITS		(OCTAL 77340)
2-4	RN	01021	CSM STATE VECTOR (POSITION)
5-7	VN	01027	CSM State vectmr (VElocity)
8	PIPTIME	01035	CSM State vector time
9 A	coux	00032	actual x cou angle
9 B	CDUY	00033	ACTUAL Y CDU ANGLE
10A	couz	00034	ACTUAL 2 CDU ANGLF
10 B	CDUT	00035	OPTICS TRUNNION
11	ADOT	03162	ADOTS ROLL OR DGARATE
12	$\triangle D O T+2$	03164	ADOTS PITCH OR OMEGA B PITCH
13	ADOT +4	03166	ADOTS YAW DR DMEGA B YAW
14 A	AK	03125	X ATTITUDE ERROR
148	AK1	03126	\checkmark ATTITUNE ERROR
15A	AK2	03127	2 ATTITUDE ERROR
158	RCSFLAGS	03130	RCS FLAGS
16 A	THETADX	03223	
168	THETADY	03224	
17 A	THETADZ	03225	
178			GARBAGE

Word \#	Mnemonic	ECADR	
18	TIG	03412	
19A	SLOPE	03305	
198	ADB	03306	
204	DAPDATR3	03070	
208	CHSFAIL	03071	
214	CH6FAIL	03072	
21 B	DKRATE	03073	
22A	DKDB	03074	
22B	WHICHDAP	03075	
23	VHFTIME	01002	
24	MARKDOWN	036.54	GPTICS MARK TIME
25A	MARKDOWN + 2	03656	Y CDU ANGLE
25B	MARKDOW +3	03657	OPTICS ShAFt ANGLE
26 A	MARKDOWN + 4	03660	Z COU ANGLE
26 B	MARKDOWN +5	03661	OPTICS TRUNNION ANGLE
27 A	MARKDOW +6	03662	\times cou angle
278	RM	03663	VHF RANGE
28A	VHFCNT	00764	VHF MARKS
28B	TRKMKCNT	00765	OPTICS MARKS
29	TTPI	03642	
30	SVEC +2	03753	
31	DELVTPF	02630	DELTA V MAGNITUDE
32	TNSR	02460	NSR TIME
33	TNCC	02462	NCC TIME
34	TPASS4	03633	TPF TIME

Word \#	Mnemonic	ECADR	
35-37	DELVSLV	03404	
38	Range	02201	
39	RRATE	02203	RANGE RATE
40-44	FLAGWRDO	00074	FLAGWORDS 0 THRU 9
45-50	DSPTAB	01216	DSPTAB THRU DSPTAB + 110
51	TIME 2	00024	AGC TIME
52-54	R-OTHER	01703	OWS STATE VECTOR (POSITION)
55-57	V-OTHER	01711	OWS State vector (VElOCity)
58	T-OTHER	01642	OWS STATF VECTOR TIME
59A	coux	00032	ACTUAL X CDU ANGLE
59 B	cour	00033	actual y cou angle
$60 \pm$	couz	00034	ACTUAL 2 CDU ANGLE
60 B	CDUT	00035	OPTICS TRUNNION
61	ADOT	03162	ADOTS ROLL OR OGARATE
62	ADOT +2	03164	ADOTS PITCH OR OMEGA R PITCH
63	ADOT +4	03166	ADOTS YAW OR DMEGA B YAW
64 A	OPTION1	00770	
64 B	OPTION2	$0 \subset 771$	
65	TET	01516	
66A	THETADX	03223	
66 B	THETADY	03224	
67 A	THETADZ	03225	
678			GARBAGE
684	RSBBQ	01432	BBANK AT RESTART
68 B	RSBBQ +1	01433	Q AT RESTART

Word \#	Mnemonic	ECADR	
69 A			GARBAGE
69B	CHANT7		CHANNEL 77
70A	C31FLWRD	00373	
708	FAILREG	00374	
714	FAILREG +1	00375	
718	FAILREG + 2	00376	
72A	CDUS	00036	CPTICS SHAFT
72B	PIPAX	00037	
73A	PIPAY	00040	
738	PIPAL	00041	
74	NCITIG	03765	,
75	NC2TIG	03767	
76	DHDSP	03547	
77-79	DELVEET 3	03623	
80A	OPTMODES	01327	
808	HOLDFLAG	01330	
81 A	LEMMASS	03121	
81 B	C SMMASS	03122	CSM MASS
82A	DAPDATR1	03114	
82B	DAPDATR2	03115	
83 A	ERRORX	03220	
83 B	ERRORY	03221	
84A	ERRORZ	03222	
84 B			GARBAGE
85	WBODY	03154	WBODY OR OMEGAC (ROLL)

Word \#	Mnemonic	ECADR			
86	WBODY +2	03156	WBODY OR	OMEGAC (PI	PITCH)
87	WBODY +4	03160	WBODY OR	OMEGAC (YAW)
884	REDOCTR	01276			
88 B	THETAD	01277	DESIRED F	FINAL CDU	x
89A	THETAD +1	01300	CESIRED F	FINAL CDU	Y
898	THETAD +2	01301	DESIRED F	FINAL CDU	Z
904	I MODES30	01323			
908	IMODES33	01324			
914	DSALMOUT		CHANNEL	11	
918	CHAN 12		CHANNEL		
92 A	CHAN 13		CHANNEL	13	
928	CHAN14		CHANNEL	14	
93 A	CHAN30		CHANNEL		
938	CHAN31		CHANNEL		
94 A	CHAN32		CHANNEL	32	
948	CHAN33		CHANNEL		
95	RTHETA	02205			
96	DVDSP1	03573			
97	DVDSP2	03575			
98	UTPIT	03717			
99	UTYAW	03721			
100 A	FLGWRD10	00106			
100B	FLGWRD11	00107	.		

2.3.1.4 Entry and Update List

Word \#	Mnemonic	ECADR	
14	I.D. WORD		(OCTAL 77776)
18	SYNCH BITS		(OCTAL 77340$)$
2-4	RN	01021	CSM STATE VFCTOR (PISITION)
5-7	VN	01027	CSM STATF VECTOR (VELOCITY)
8	PIPTIME	01035	CSM STATE VECTOR TIMF.
94	CDUX	00032	actual x cou angle
9 B	CDUY	00033	ACTUAL Y CDU ANGLF
10A	couz	00034	ACTUAL Z CDU ANGLE
10 B	CDUT	00035	OPTICS TRUNNION
11	ADOT	03162	ADOTS ROLL OR DGARATE
12	$A D O T+2$	03164	ADOTS PITCH OR OMEGA B PITCH
13	ADOT +4	03266	ADOTS YAW OR DMEGA B YAW
144	AK	03125	X ATTITUDE ERROR.
148	AK1	03126	Y ATTITUDE FRROR
15A	AK2	03127	2 ATTITUDE ERROR
15 B	RCSFLAGS	03130	RCS FLAGS
164	THETADX	03223	
16 B	THETADY	03224	
17A	THETADZ	03225	
178		03226	garbage (DURING UPDATE ONLY)

Entry and Update List (Continued)

Word \#	Mnemonic	ECADR	
18 A	CMDAPMOD	03331	ENTRY DAP MODE
18 B	PREL	03332	ROLL Pate
19A	QRFL	03333	PItch rate
198	RREL	03334	YAW RATE
20	L/D1	03635	
21-30	UPBUFF	00304	UPBUFF THRU UPBUFF +190
31 A	COMPNUMB	00300	
318	UPOLDMOD	00301	
324	UPVERB	00302	
32 B	UPCOUNT	00303	
334	PAXERR1	03344	
33 B	ROLLTM	03345	
34	LATANG	03675	
35	RDOT	03677	
36	THETAH	03701	
37	LAT (SPL)	03400	
38	LNG(SPL)	03402	
39A	ALFA/180	03316	ALPHA
398	BETA/180	03317	BETA
40-44	FLAGWRDO	00074	FLAGWORDS 0 THRU 9
45-50	DSPTAB	01216	DSPTAB THRU DSPTAB + 110
51	TIME2	00024	AGC TIME
52	PIPTIMEI	01076	
53	DELVX	01304	
54	DELVY	01306	

Entry and Update List (Continued)

Word \#	Mnemonic	ECADR	
55	DELVZ	01310	
56	TtE	03726	
57	$\checkmark 10$	03724	
58	\checkmark PRED	03736	
59A	c Dux	00032	ACTUAL X CDU ANGLE
598	COUY	00033	ACTUAL Y CDU ANGLE
60A	CDUz	00034	ACTUAL 2 CDU ANGLE
608	COUT	00035	OPTICS TRIJNNION
61	ADOT	03162	ADOTS ROLL OR CGARATE
62	ADOT +2	03164	ADOTS PITCH OR OMEGA B PITCH
63	ADOT +4	03166	ADOTS YAW DR OMEGA B YAW
64 A	OPTION1	00770	
648	OPTION2	00771	
65	TET	01516	
664	ERRORX	03220	.
66B	ERRORY	03221	
67 A	ERRORZ	03222	
67B	THETADX	03223	
68A	THETADY	03224	
68B	THETADZ	03225	
69 A	CMDAPMOD	03331	ENTRY DAP MODE
698	PREL	03332	ROLL RATE
70A	QREL	03333	PItch rate
70 B	RREL	03334	YAW RATE
71-80	UPBUFF	00304	UPBUFF THRU UPBUFF +190

Entry and Update List (Continued)

Word \#	Mnemonic	ECADR	
814	LEMMASS	03121	
818	CSMMASS	03122	CSM MASS
82A	DAPDATR1	03114	
82B	DAPDATR2	03115	
83 A	ROLLTM	03345	
83 B	ROLLC	03346	
84 A	OPTMODES	01327	
$84 B$	HOLDFLAG	01330	
85	W BODY	03154	WBODY OR OMEGAC (ROLL)
86	WBODY +2	03156	WBODY OR OMEGAC (PITCH)
87	WBODY + 4	03160	WBODY OR OMEGAC (YAW)
88A	REDOCTR	01276	
888	THETAD	01277	DESIRED FINAL CDU X
89A	THETAD +1	01300	DESIRED FINAL COU Y
89B	THETAD +2	01301	DESIRED FINAL CDU 2
904	1 modes 30	01323	
908	I MODES33	01324	
914	DSALMOUT		CHANNEL 11
918	CHAN 12		CHANNEL 12
92 A	CHAN 13		CHANNEL 13
92 B	CHAN 14		CHANNEL 14
93 A	CHAN30		CHANNEL 30
93 B	CHAN31		CHANNEL 31
94 A	CHAN 32		CHANNEL 32
94 B	CHAN3 3		CHANNEL 33

Entry and Update List (Continued)

Word \#	Mnemonic	ECADR	
954	RSBBQ	01432	BBANK AT RESTART
95 B	RSBBQ + 1	01433	Q at restart
964			garbage
968	CHANT7		CHANNEL 77
97A	C31FLWRD	00373	
978	FAILREG	00374	
98 A	FAILREG +1	00375	
988	FAILREG +2	00376	.
994	FLGWRD10	00106	
99 B	FLGWRD11	00107	
100	GAMMAEI	03740	

2.3.2 Alphabetic Reference List

Alphabetic Reference List (Continued)

Mnemonic	ECADR	Mnemonic	ECADR
DSPTAB + 1	01217	FLAGWRD5	00101
DSPTAB +2	01220	FLAGWRD6	00102
DSPTAB +3	01221	FLAGWRD 7	00103
DSPTAB +4	01222	FLAGWRD8	00104
DSPTAB +5	01223	FLAGWRD9	00105
DSPTAB +6	01224	FLGWRD10	00106
DSPTAB +7	01225	FLGWRD11	00107
DSPTAB +8D	01226	GAMMAEI	03740
DSPTAB +9D	10227	GAMMAL	03740
DSPTAB +10D	01230	HAPOX	02203
DSPTAB +11D	01231	HOLDFLAG	01330
DVDSP1	03573	HPERX	02205
DVDSP2	03575	IGC	02761
DVTOTAL	03425	IMODES30	01323
ELEV	03640	IMODES33	01324
ERRORX	03220	JJ	03741
ERRORY	03221	L/DCALC	03726
ERRORZ	03222	L/D1	03635
FAILREG	00374	LAT (SPL)	03400
FAILREG +1	00375	LATANG	03675
FAILREG +2	00376	LAUNCHAZ	02633
FIXTIME	01333	LEMMASS	03121
FLAGWRD0	00074	LEWD	03724
FLAGWRD 1	00075	LNG(SPL)	03402
FLAGWRD2	00076	MARKDOWN	03654
FLAGWRD3	00077	MARKDOWN +2	03656
FLAGWRD4	00100	MARKDOWN + 3	03657

Alphabetic Reference List (Continued)

Mnemonic	ECADR	Mnemonic	ECADR
MARKDOWN +4	03660	PIPAZ	00041
MARKDOWN +5	03661	PIPTIME	01035
MARKDOWN + 6	03662	PIPTIME1	01076
MARKTIME	01115	PREDANG	03740
MARK2DWN	03460	PREL	03332
MARK2DWN +2	03462	QAXERR	03223
MARK2DWN + 3	03463	QREL	03333
MARK2DWN +4	03464	Q7	03225
MARK 2DWN +5	03465	R-OTHER	01703
MARK2DWN + 6	03466	RANGE	02201
MGC	02763	RAXERR	03224
NC1TIG	03765	RCSFLAGS	03130
NC2TIG	03767	RDOT	03677
OGARATE	03162	RDOTREF	01277
OGC	02757	REDOCTR	01276
OMEGAB	03162	REFSMMAT	01717
OMEGAC	03154	RM	03663
OMEGAYB	03164	RN	01021
OMEGAZB	03166	ROLLC	03346
OPTION 1	00770	ROLLTM	03345
OPTION2	00771	RRATE	02203
OPTMODES	01327	RRATE2	02205
PACTOFF	03010	RREL	03334
PAXERR1	03344	RSBBQ	01432
PCMD	03252	RSBBQ +1	01433
PIPAX	00037	RTHETA	02205
PIPAY	00040	SLOPE	03305

Alphabetic Reference List (Continued)

Mnemonic	ECADR	Mnemonic	ECADR
SVEC + 2	03753	UPVERB	00302
SW/NDX	00305	UTPIT	03717
T-OTHER	01642	UTYAW	03721
TEPHEM	01700	V-OTHER	01711
TET	01516	VDT/180	03220
TEVENT	01014	VGTIG	03771
TGO	03427	VHFCNT	00764
THETAD	01277	V HFTIME	01002
THETAD +1	01300	VIO	03724
THETAD + 2	01301	VL	03736
THETADX	03223	VN	01027
THETADY	03224	VPRED	03736
THETADZ	03225	VREF	01301
THETAH	03701	V1	00325
TIG	03412	WBODY	03154
TIME1	00025	WBODY +2	03156
TIME2	00024	WBODY +4	03160
TNCC	02462	WHICHDAP	03075
TNSR	02460	XOLDBUF	03165
TPASS4	03633	XPIPBUF	03162
TRKMKCNT	00765	YACTOFF	03011
TTE	03726	YCMD	03253
TTPI	03642	YOLDBUF	03166
UPBUFF	00304	YPIPBUF	03163
UPCOUNT	00303	ZOLDBUF	03167
UPOLDMOD	00301	ZPIPBUF	03164

2.3.3 Alphabetic Reference List of Entry Shared Registers

The ECADRs listed below do not reflect the actual E memory address of the listed mnemonics, but rather the ECADR shared for downlink. This list is to be used to locate the description of the downlinked quantity in section 2.4.

Mnemonic	ECADR
ASKEP	03154
ASPDWN	03157
ASPUP	03156
ASP1	03155
ASP3	03160
LCX $/ 360$	03222
PREL	$00306,00311,00314,00317,00322$
QREL	$00307,00312,00315,00320,00323$
RREL	$00310,00313,00316,00321,00324$

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
0024-0025	TIME 2 , TIME1	51	51	51	51
0032-0034	CDUX, Y, Z	9-10a;59-60a	9-10a;59-60a	9-10a;59-60a	9-10a;59-60a
0035	CDUT	10b;60b	10b;60b	10b;60b	10b;60b
0036	CDUS	72a	72 a	72a	
0037-0041	PIPAX, Y, Z	72b-73	72b-73	72b-73	
0074-0105	FLAGWRD0-9	40-44	40-44	40-44	40-44
0106-0107	FLGWRD10-11	77	77	100	99
0300	COMPNUMB				31 a
0301	UPOLDMOD				31 b
0302	BESTI		19a		
0302	UPVERB				32a
0303	BESTJ		19b		
0303	UPCOUNT				32 b
0304-0327	UPBUFF				21-30;71-80
0304	CMTMTIME				21a; 71a
0305	SW/NDX				21b; 71b
0325-0326	V1				29b-30a; $79 \mathrm{~b}-80 \mathrm{a}$
0327	A0				30b;80b
0373	C31FLWRD	70 a	70a	70a	97a
0374-0376	FAILREG	70b-71	70b-71	70b-71	97b-98
0764	VHFCNT			28a	
0765	TRKMKCNT			28 b	
0770	OPTION 1		64a	64a	64a
0771	OPTION2		64b	64 b	64b
1002-1003	VHFTIME			23	
1014-1015	TEVENT	78	78		
1021-1026	RN	2-4	2-4	2-4	2-4
1027-1034	VN	5-7	5-7	5-7	5-7
1035-1036	PIPTIME	8	8	8	8
1076-1077	PIPTIME 1	24			52
1115-1116	MARKTIME	31			
- 1216-1231	DSPTAB	45-50	45-50	45-50	45-50
1276	REDOCTR	88a	88a	88a	88a
1277-1301	THETAD	88b-89	88b-89	88b-89	88b-89
1277-1300	RDOTREF				88b-89a
1301	VREF	.			89b
1304-1311	DELVX, Y, Z	25-27			53-55
1323	IMODES30	90a	90a	90a	90a
1324	IMODES33	90 b	90b	90b	90 b
1327	OPTMODES	80a	80a	80a	84a

E memory Reference List, continued

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
1330	HOLDFLAG	80b	80b	80b	84b
1333-1334	FIXTIME	32			
1432-1433	RSBBQ	68	68	68	95
1516-1517	TET	76	65	65	65
1642-1643	T-OTHER	58	58	58	
1700-1702	TEPHEM		95-96a		
1703-1710	R-OTHER	52-54	52-54	52-54	
1711-1716	V-OTHER	55-57	55-57	55-57	
1717-1732	REFSMMAT	34-39	34-39		
2201-2202	RANGE			38	
2203-2204	HAPOX		28		
2203-2204	RRATE			39	
2205-2206	HPERX		29		
2205-2206	RTHETA			95	
2205-2206	RRATE2			95	
2460-2461	TNSR			32	
2462-2463	TNCC			33	
2630-2631	DELVTPF			31	
2633-2634	LAUNCHAZ		79		
2757-2760	OGC		74		
2761-2762	IGC		75		
2763-2764	MGC		76		
3010	PACTOFF	28a	30a		
3011	YACTOFF	28b	30b		
3070	DAPDATR3	20a	98a	20a	
3071	CH5FAIL	20b	98b	20b	
3072	CH6FAIL	21a	99a	21a	
3073	DKRATE	21 b	99 b	21b	
3074	DKDB	22 a	100a	22a	
3075	WHICHDAP	22 b	100b	22b	
3114	DAPDATRI	82 a	82a	82a	82a
3115	DAPDATR2	82b	82b	82b	82b
3121	LEMMASS	81a	81 a	81a	81a
3122	CSIMMASS	81b	81b	81b	81b
3125	AK	14a;64a	14a	14a	14a
3126	AK1	14b;64b	14b	14b	14b
3127	AK2	15a;65a	15a	15a	15a
3130	RCSFLAGS	15b;65b	15b	15b	15b
3154-3161	WBODY	85-87	85-87	85-87	85-87
3154-3161	OMEGAC	85-87			

E memory Reference List, continued

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
3162-3167	ADOT	11-13;61-63	11-13;61-63	11-13;61-63	11-13;61-63
3162-3163	OGARATE	11;61			
3162-3167	OMEGAB	11-13;61-63			
3162	XPIPBUF				11a;61a
3163	YPIPBUF				11b;61b
3164-3165	OMEGAYB	12;62			
3164	ZPIPBUF				12a;62a
3165	XOLDBUF				12b;62b
3166-3167	OMEGAZB	13;63			
3166	YOLDBUF				13a;63a
3167	ZOLDBUF				. $13 \mathrm{~b} ; 63 \mathrm{~b}$
3220-3222	ERRORX, Y, Z	83-84a	83-84a	83-84a	66-67a
3220	VDT/180				66 a
3221	-VT/180E				66b
3223-3225	THETADX, Y, Z	16-17a;66-67a	16-17a;66-67a	16-17a;66-67a	16-17a;67b-68
3223	QAXERR				16a;67b
3224	RAXERR				16b;68a
3225-3226	Q7				17
3252	PCMD	29a;79a			
3253	YCMD	29b;79b			
3305	SLOPE	19a	97 a	19a	
3306	ADB	19b	97 b	19 b	
3316	ALFA/180				39a
3317	BETA/180				39 b
3331	CMDAPMOD				18a;69a
3332	PREL				18b;69b
3333	QREL				19a;70a
3334	RREL				19b;70b
3344	PAXERR1				33a
3345	ROLLTM				33b;83a
3346	ROLLC				83b
3400-3401	LAT(SPL)			-	37
3402-3403	LNG(SPL)				38
3404-3411	DELVSLV	98-100		35-37	
3412-3413	TIG	18	18	18	
3425-3426	DVTOTAL	- 33			.
3427-3420	TGO	23			
3460-3466	MARK2DWN		24-27a		
3547-3550	DHDSP			76	
3573-3574	DVDSP1			96	
3575-3576	DVDSP2			97	
3623-3630	DELVEET3			77-79	
3633-3634	TPASS4			34	
3635-3636	L/D1				20

E memory Reference List, continued

2.4 Description of Telemetered Quantities

This section contains a list of CMC registers making up the various downlists, ordered by erasable memory address, followed by a list of CMC input and output channels. Each entry contains the mnemonic of the register(s) or channel, the downlist word number(s) in which it appears, and a description of its contents.

A register may contain other quantities during programs in which the CMC no longer needs to save the primary downlist quantity.

The following downlist words contain meaningless information:

Powered List: 17b, 67b, 69a, 84b.
Coast and Align List: 17b, 23b, 27b, 67b, 69a, 84b, 96b.

Rendezvous List: 17b, 67b, 69a, 84b.
Entry/Update List: 17b*, 96a.
*during update only

ECADR	Mnemonic	Powered	Coast \&Align	$\frac{\text { Rendezvous }}{\text { Entry/ }}$	Endate
$\underline{0024-0025}$	TIME2,TIME1	$\underline{51}$	$\underline{51}$	$\underline{51}$	$\underline{51}$

0032-0034

0035

0036

0037-0041

0074-0105

CDUT
10b;60b
$10 \mathrm{~b} ; 60 \mathrm{~b}$

10b;60b

The optics trunnion angle CDU, scaled (degrees-19.7754)/45 (two's complement). The angle measurement varies from -19.775° to 45°, corresponding to a range of 0° to about 65° in actual trunnion.
$\underline{\text { CDUS }} \quad \underline{72 \mathrm{a}} \quad \underline{72 \mathrm{a}} \quad \underline{72 \mathrm{a}}$

The optics CDU shaft angle. This register is an unsigned 15 -bit fraction scaled, degrees/360. The angle varies $\pm 180^{\circ}$.
$\underline{\text { PIPAX, } \mathrm{Y}, \mathrm{Z} \quad \underline{72 \mathrm{~b}-73} \quad \underline{72 \mathrm{~b}-73} \quad \underline{72 \mathrm{~b}-73}}$

The accumulation of output pulses from the X, Y, and Z accelerometers (a measure of the velocity changes), scaled (centimeters/second) $/\left(5.85 \times 2^{14}\right)$. These registers are zeroed by PIPUSE (called by LASTBIAS which is called by PREREAD at the start of Average-G). They are then read and zeroed every two seconds by READACCS (or REREADAC) throughout Average-G.

FLAGWRD0-9
40-44
40-44
40-44
40-44

See Flagword Table, Sec. 2.5 for descriptive material.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
0106-0107	FLGWRD10-11	77	77	100	99
See Flagword Table, Sec. 2.5 for descriptive material.					
$\underline{0300}$	COMPNUMB				31 a

The total number (octal) of components the update program expects to receive. For a Verb 71 or a Verb 72 update, COMPNUMB will be set equal to the index value.

UPOLDMOD 31 b

This is the number of the CMC program which was interrupted by P27, the update program. It will indicate program $0,2,20$, or Fresh Start (777778).

BESTI $19 a$

The celestial body I. D. associated in P51, P52, P53, and P54 with the optics mark data in words 20-23a of the Coast and Align list. Each star I. D. will be the octal equivalent of the CMC star number multiplied by six; e.g., for Alpha Tauri, catalogue no. $11_{8}, \operatorname{BESTI}=66_{8} . \quad$ Calculated in P50, P51, P52, P53, P54 and P55.

UPVERB

The least significant digit of the verb number which was selected to initiate a desired CMC update.

BESTJ
$19 b$

The celestial body I.D. associated with the optics mark data in words 24-27a of the Coast and Align list. Each star I.D. will be the octal equivalent of the CMC star number multiplied by six; e.g., for Alpha Tauri, catalogue no. 118 , BESTJ $=668$. Calculated in P51, P52, P53 and P54.

The octal identifier of the next quantity that the update program expects to receive. As each quantity goes into UPBUFF, UPCOUNT will be incremented by one, until it is equal to COMPNUMB. It will not change during a line-by-line correction of the data load.

[^7]

ECADR
Mnemonic Powered Coast \& Align . Rendezvous

The number of optics marks incorporated into the state vector since the initialization of P20, scaled 2^{-14}. This item is used in the $N 45$ display (two least significant digits of R1) and has a range in that display of 0 to 99 (modulo 100). TRKMKCNT is incremented each time an optics mark is incorporated. The frequency depends upon the astronaut because marking is a manual operation. Set to 0 as in above (VHFCNT).

0770-0771

1002-1003

OPTION1, OPTION2

64
64

64

OPTION1. The option code which is displayed in R1 in conjunction with a flashing V04N06 to request the astronaut to load into R2 the option he desires.

OPTION2. The astronaut-selectedoption which was loadedinto R 2 as a result of the displayed OPTION1 code.

The OPTION1 and OPTION2 codes, scaled in octal, are as follows:

OPTION1 Code	Purpose	OPTION2 Code (Astronaut Input)
00001 (during P52, P54)	Specify IMU	$1=$ Preferred $2=$ Nominal
	Orientation	$3=$ REFSMMAT
00002 (during P21 \& P29)	Specify Vehicle	1=This Vehicle $2=$ Other Vehicle
00012 (during P50)	Specify ATM Orientation	1=ATM Sun Sensor
	Determination Technique	2=ATM Sun Sensor \& Star Tracker
		3=Docking Angles from External Source
00013 (during P55)	Specify tracker angle computation data source	1= Mark on celestial body \& IMU Orientation
		$2=$ Mark on celestial body \& ATM in Solar Inertial Orientation
00024 (during P20)	Specify Tracking	0=Rendezvous, VECPOINT
	Option	1-Celestial body, VECPOINT
		2=Rotation
		4=Rendezvous, 3-axis
		5 Celestial body, 3-axis
VHFTIME		23

The time (TIME2, TIME1) of the last VHF Range mark that is read by R08 when called by R22. It is scaled centiseconds/ 2^{28}. When VHFRFLAG is found to be set and at least 60 seconds have expired since the time of the last reading, R22 calls

ECADR	Mnemonic	Powered	Coast \& Align	Rende 2 v
1002-1003	VHFTIME			23

R08 to read the range and record time of reading. This time is stored in VHFTIME upon return to R22. It is used to determine if one minute has elapsed since the last mark was processed and to integrate the state vector to the mark time. It is assumed, for practical purposes, that the range data is acquired at this time but actually there is a very small time delay.

1014-1015

1021-1036

1076-1077

TEVENT
78
78

The time of liftoff (P11 clock zeroing), or time of any SPS ignition or shutdown command (P40); whichever occurs last. It is scaled centiseconds/2 2^{23} and referenced to the computer clock.

RN, VN,
PIPTIME

2-8
2-8

2-8
2-8

CSM state vector and time. The CMC'S latest calculated state vector for the CSM. Words 2-4 contain the position components X, Y, Z, scaled meters $/ 2^{29}$. Words 5-7 contain the velocity components, X, Y, Z, scaled (meters/centisecond) $/ 2^{7}$. Word 8 contains the time associated with the CSM state vector in words 2-7, scaled centiseconds $/ 2^{28}$, referenced to the computer clock. These parameters are calculated whenever the CSM state vector is permanently extrapolated or changed, as follows:

P00, P20 option 1, 2, 5 - every four time steps
P20 - upon entry (MINKEY) or after initial displays (non-MINKEY options 0, 4), then extrapolated for each mark; updated by each mark incorporation if CM update option.
P27-update of state vector
Average-G - every cycle
V47 - state vector transfer
P77 - Impulsive ΔV Program

PIPTIME1 24 52

Thetime (TIME2, TIME1) at which the PIPAs are read, scaled centiseconds/2 ${ }^{28}$. Integration stores the PREREAD state vector time in anticipation of reading PIPAs at that time. Updated by PIPASR every two seconds during Average-G.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/
					Update

The time (TIME2,TIME1) of the last VHF Range mark that is read by R08 when called by P48. It is scaled centiseconds/2 2^{28}. It is assumed for practical purposes that the range data is acquired at this time but actually there is a very small time delay.

DSPTAB
45-50
45-50
45-50
45-50

The eleven registers, DSPTAB+0 through DSPTAB+10D, indicate the status of the DSKY displays. If bits 15 through 12 are 0001 , the next 11 bits will indicate the actual status of the DSKY displays; if bits 15 through 12 are 1110 , the next 11 bits indicate the "ones" complement of the status to which the CMC will command the DSKY display. Bits 11-1 of DSPTAB+0 through DSPTAB+10D are decoded as follows:

DSPTAB Register	Downlink Word Number	Bit Assignments		
		Bit 11	Bits 10-6	Bits 5-1
DSPT AB+0	45a	-R3S	R3D4	R3D5
DSPTAB+1	45b	+R3S	R3D2	R3D3
DSPTAB+2	46a		R2D5	R3D1
DSPTAB+3	46b	-R2S	R2D3	R2D4
DSPTAB+4	47a	+R2S	R2D1	R2D2
DSPTAB+5	47 b	-R1S	R1D4	R1 D5
DSPTAB+6	48a	+R1S	R1 D2	R1 D3
DSPTAB+7	48 b			R1 D1
DSPTAB+8D	49 a		ND1	ND2
DSPTAB+9D	49 b		VD1	VD2
DSPTAB+10D	50a		MD1	MD2

R3D1 stands for digit one of the third register and VD1 stands for the first digit of the verb display, etc. For the right character of a pair, bit 5 is the MSB with bit 1 the LSB. For the left character of a pair, the MSB is bit 10 with bit 6 the LSB. Bit 11 of some of the DSPTABs contains discrete information, a one indicating that the discrete is on. For example, a one in bit 11 of DSPTAB+1 indicates that R3 has a plus sign. If the sign bits associated with a given register are both zeros, then the content of that particular register is octal; if either of the bits is set, the register content is decimal data. The five bit codes associated with the digits are as follows:

DSPTAB's
(Cont.)

45-50
45-50
45-50
45-50

MSB
$\underline{L S B}$

0	1	0	1	0	1
1	0	0	0	1	1
2	1	1	0	0	1
3	1	1	0	1	1
4	0	1	1	1	1
5	1	1	1	1	0
6	1	1	1	0	0
7	1	0	0	1	1
8	1	1	1	0	1
9	1	1	1	1	1
Blank	0	0	0	0	0

The following is a diagram of the DSKY face showing positions of the different digits:

Register 1

\pm	R1D1	R1D2	R1D3	R1D4	R1D5

Register 2

\pm	R2D1	R2D2	R2D3	R2D4	R2D5

Register 3

\pm	R3D1	R3D2	R3D3	R3D4	R3D5

DSPTAB+11D. This register drives relays for display lights. The bit assignments are:

ECADR

1216-1231 1276

1277-1301

DSPTAB's
45-50
(Cont.)

45-50
45-50

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
1277-1301	THETAD (Cont.)	88b-89	88b-89	88b-89	88b-89
	1277-1301	REF (dou (high-orde caled (ft /	cision), refere ster only), refe $\times 25766.1973)$	RDOT for UP velocity for	NTRL. CONTRL.
1304-1311	DELVX, Y, Z	25-27			53-55

The sampled $\mathrm{X}, \mathrm{Y}, \& \mathrm{Z}$ PIPA accumulations (velocity increments) with compensation for PIPA bias and scale factor errors. These quantities are in the stable member coordinate system and are scaled, $(\mathrm{cm} / \mathrm{sec}) /\left(5.85 \times 2^{14}\right)$. Calculation takes place every two seconds during Average-G. The variation with time and the range of values depend on the acceleration level and compensation. There is a zeroing of all low-order components and a momentary zeroing of DELVY and DELVZ prior to the loading of PIPA contents into respective high-order words (part of READACCS, or REREADAC task). If no restarts occur the momentary zeroing would not appear on the downlink. PIPA compensation follows in Servicer job (inhinted, so that all or no PIPA compensation shows up).

IMODES30
90a
90a
90a
90 a

A cell whose individual bits are used to control the monitoring of IMU functions associated with channel 30 (and in a few cases channel 33). Set to 374118 for a fresh start; a restart sets the word to 37000_{8} plus the present contents of bits 9,5 , $4,3,1$ (zeroing bit $15,8,7,6$, and 2). Word is updated once every 0.48 seconds based upon the channel sampling controlled by the T4RUPT computations. Discussion below ignores settings performed by verb 35 ("lamp test").

Bit Meaning

15 Last sampled value of channel 30 bit 15 (0 if IMU temperature within limits). If bit changes, bit 4 (Temperature caution) of channel 11 is set to agree with this bit. Bit set 0 for a fresh start or restart.

14 Last sampled value of channel 30 bit 14 (0 if ISS has been turned on or commanded to be turned on). Bit is used in the control of IMU monitoring logic; set to 1 for a fresh start and restart.

13 Last sampled value of channel 30 bit 13 (0 if an IMU fail indication produced) Set 1 for a fresh start or restart; if bit becomes 0 while bit 4 of this word is also zero, then channel 11 bit 1 (ISS Warning) is set 1 .

Last sampled value of channel 30 bit 12 (0 if an IMU CDU fail indication produced). Set 1 for a fresh start or restart; if bit becomes 0 while bit 3 of this word is also zero, then channel 11 bit 1 (ISS Warning) is set 1 .

11 Last sampled value of channel 30 bit 11 (0 if an IMU cage command produced by crew). Set 1 for a fresh start or restart.

10 Last sampled value of channel 33 bit 13 (0 if a PIPA fail indication produced), having same value as bit 13 of IMODES33. Bit is set 1 for a fresh start or restart, and if an error reset key code is received via DSKY or uplink. If bit becomes 0 while bit 1 of this word is also zero, then channel 11 bit 1 (ISS Warning) is set 1 .

9 Last sampled value of channel 30 bit 9 (0 if IMU turned on and operating with no malfunctions). Set 1 for a fresh start. Alarm 0214_{8} is generated if bit goes from 0 to 1 while bit 8 (IMUSE) of Flagword 0 is 1.

8 Bit used to control the IMU turn-on sequencing. It is set 1 if bit 7 of this word is sensed as 1 , and is reset (with bit 7) to zero 0.48 secs later, before starting the IMU turn-on sequencing. Used to achieve a wait of 0.48 secs before acting on the IMI turn-on information. Set 0 by fresh start or restart.

7 Bit used to control the IMU turn-on sequencing. It is set to 1 based on logic using bits 14, 9, and 2 of this word, and is reset to zero (with bit 8 of this word) 0.48 secs later. Also set 0 by a fresh start or restart. Hence can be set to 1 if ISS initialization requested (bit 14 or bit 9 of this word changing) since last fresh start, turn-off of IMU (change in bit 9 of this word), or turn-on delay complete (change in bit 14 of this word).

6 Bit set 1 to indicate that IMU initialization is being carried out. Set 1 during turn-on sequence, if a cage command (bit 11 of this word) is received, or if

LMU zeroing in T4RUPT is done. Set 0 by a fresh start or restart, about 8.22 seconds after removal of cage command, about 8.22 seconds after start of zeroing in T4RUPT (when bits $8-7$ set 0), or about 97.90 seconds after start of turn-on sequence (when bits $8-7$ set 0 marks the "start" of sequence). If bit is 1 , no verb 37 input is processed and alarm pattern 1520_{8} is generated. If bit is 1 , an error exit from the internal IMU routines is forced (coarse align, fine align, or gyro torquing).

5 Bit set 1 to inhibit the generation of program alarm 0212_{8} if a PIPA fail signal (bit 13 of channel 33) is produced. Set 0 as part of a fresh start, and value retained if a restart. Bit not used unless bit 1 of this word is 1 . Bit set to 1 during IMU turn-on sequence (when bit 6 is set 1), and reset 0 about 4.0 seconds after bit 6 is reset 0 (alarm generated when Average- G is stopped, if bit 10 of this word is 0 , regardless of the value of this bit 5).

4 Bit set 1 to inhibit generation of an ISS warning based on receipt of an IMU fail signal. Set 1 as part of a fresh start, and value retained if a restart. Bit reset to 0 when bit 6 is set 0 (having been set 1 when bit 6 set 1). Bit also set 1 when coarse align of IMU is started, and is set 0 about 5.12 seconds after mode change to fine align is done. Also set to 1 for 8.22 seconds when IMU CDU zero commanded outside of T4RUPT package.

3

2 Bit set 1 to indicate failure of the turn-on delay sequence for IMU turn-on (alarm 0207_{8} is also generated). Zeroed by fresh start or restart.

1 Bit set 1 to inhibit generation of an ISS warning based on receipt of a PIPA fail signal (bit 13 of channel 33). Bit set 1 as part of a fresh start, and value retained if a restart. Bit also set 1 when bit 6 of this word is set 1 (but is not subsequently reset in the T4RUPT logic, cf. bit 5 of this word).

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/
1324	IMODES33	90b	90b	90b	Update $90 b$

A cell whose individual bits are used to control the monitoring of functions associated with channel 33 (and other items). Set to 16000_{8} as part of a Fresh Start; a restart sets it to $16000_{8}+$ the present contents of bit 6 (other bits set 0); and an error reset key code sets bits $13-11$ to 1 (leaving other bits alone). Word is updated once every 0.48 seconds. Discussion below ignores settings performed by verb 35 ("lamp test") except for bit 1.

$$
\text { Bit } \quad \text { Meaning }
$$

15 Not assigned, hence expected to remain 0 .

14 Last sampled value of channel 32 bit 14 (0 if a Proceed command is given using the old "standby" button). A transition from 1 to 0 causes a job to be established that has same program logic effect as V33E (from a mission program standpoint). Contrary to the other bits of this word, this bit is updated once every 0.12 seconds. It should be noted that in the case of a response to a V21, V22, and V23, the logic for a Proceed is not the same as for a V33E.

13 Last sampled value of channel 33 bit 13 (0 if an accelerometer fail signal, or PIP A fail, produced by hardware). Same quantity loaded into bit 10 of LMODES30 (for program logic control convenience). Fresh start and restart set bit to 1.

12 Last sampled value of channel 33 bit 12 (0 if a telemetry end pulse rejected because downlink rate too fast). When a 1 to 0 transition is sensed, alarm pattern 1105_{8} is generated. Fresh start and restart set bit to 1.

11 Last sampled value of channel 33 bit 11 (0 if an uplink bit rejected because uplink rate too fast). When a 1 to 0 transition is sensed, alarm pattern 1106_{8} is generated. Fresh start and restart set bit to 1 .

10-7 Not assigned, hence expected to remain 0 .

6 Bit set to 1 to indicate that IMU use for vehicle attitude information should not be attempted. Bit set 1 the same time as bit 6 of IMODES30 is set 1 , and also when bit 4 of IMODES30 is set 1 (for IMU zeroing external to T4RUPT and for IMU coarse align). Bit set 0 if IMU fine align routine is performed. Set 1 if IMU turned off.

Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
IMODES33 (Cont.)	90 b	90b	90 b	90b
Bit	Meaning			

5 Bit set 1 in IMU zeroing routine external to T4R,UPT while zeroing is taking place (for an interval of about 8.22 seconds, at the same time as bit 6 of this word is set in the routine). This routine is entered via V40E.

4-2 Not assigned, hence expected to remain 0 .

1 Bit set to 1 when a verb 35 ("lamp test") is received, and reset to 0 about 5 seconds later. Used to inhibit resetting of lights to 0 in T4RUPT package while the lamp test is being performed.
$\underline{\text { OPTMODES }} \quad \underline{80 \mathrm{a}} \quad \underline{80 \mathrm{a}} \quad \underline{80 \mathrm{a}} \quad \underline{84 \mathrm{a}}$

A cell whose individual bits are used to control the performance of optics functions within the T4RUPT package. Set to 00130_{8} (bits $7,5,4=1$) as part of a fresh start; a restart preserves the present values of the bits 5,4 , while setting bit 7 to 1 and zeroing the remaining bits (15-8, 6, 3-1). Word is updated once every 0.48 seconds, about 0.24 seconds before the interrupt that updates IMODES30 \& IMODES33.

Bit Meaning

15-11 Not assigned, hence expected to remain 0 .

10 Bit set 1 to indicate that zeroing of optics completed since last fresh start or restart (both of which set the bit 0). If an attempt is made to drive the optics and this bit is found to be zero, alarm 0120_{8} is generated (but computation proceeds).

9-8 Not assigned, hence expected to remain 0 .

7 Last sampled value of channel 30 bit 7 (0 if an optics CDU fail indication has been generated by the optics CDU hardware). If bit 2 of this word is 0 , a Tracker alarm (bit 8 of DSPTAB+11) is generated if this bit has a 1 to 0 transition. Bit set 1 by a fresh start or restart.

6 Not assigned, hence expected to remain 0.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
1327	OPTMODES (Cont.)	80a	80a	80 a	84a

5 Last sampledvalue of channel 33 bit 5 or its backup as indicated by C31FLWRD (0 if optics mode switch set to computer control).

4 Last sampled value of channel 33 bit 4 or its backup as indicated by C 31 F'LWRD (0 if optics mode switch set to zero optics). If bits $5-4=112$, this means that optics mode switch set to manual mode.

3 Bit set 1 when optics mode switch changed from manual or computer control mode to zero optics mode, to indicate that zeroing of the optics is in progress. If bit is 1 , then a switch out of zero optics mode will cause alarm 0116 to be generated (if switched to manual, a "grace period" of about 5.3 seconds is provided before the optics-zeroing time counter is reset, during which time a switch back to optics zeroing can be made). Bit remains 1 for about 16.2 seconds, and is then reset to 0 (at same time that bit 10 of this word is set 1 , and bit 2 of this word set 0).

2 Bit set 1 to inhibit generation of Tracker alarm (bit 8 of DSPTAB+11D) if bit 7 of this word goes from 1 to 0 . Bit set and reset at the same time as bit 3 .

1 Not assigned, hence expected to remain 0.

A multiple purpose switch which is used for establishing the control reference of the autopilot. It has the following three states:

State \quad Meaning
(+) Sample the CDU angles and store in THETADX, THETADY, and THETADZ before resuming attitude hold and resetting HOLDFLAG to (+0).
(+0) Remain in attitude hold about previously established reference angles, THETADX, THETADY and THETADZ. Set to this state if previously negative by CSM-alone or Docked DAP when $|\mathrm{MGA}|>75^{\circ}$. Also set to this state at termination of automatic maneuver.
(-) Enable automatic steering.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
1333-1334	FIXTIME	32			
	The time for which range and range rate are optimized in R27. Loaded into N 72 by astronaut. Automatically incremented by four minutes in R27 after each optimization pass is complete. Scaled centiseconds/2 2^{28}.				
1432-1433	RSBEQ	$\underline{68}$	68	$\underline{68}$	95
	RSBBQ. When a hardware restart occurs, this register is loaded with the setting of the BBANK portion of the calling address +1 and also Superbank information which is in channel 7.				
	RSBBQ + 1. Loaded with the setting of the Q-register when a hardware restart occurs.				
1516-1517	TET	76	65	65	$\underline{65}$

The time of state vector being integrated or the time to which the last state vector was integrated. It is stepped by half-time-step increments (plus or minus) whenever integration is being done. It is scaled, centiseconds/2 ${ }^{28}$.
$\underline{T-O T H E R} \quad \underline{58} \quad \underline{58}$

The time associated with the OWS state vector in words 52 through 57 , scaled centiseconds $/ 2^{28}$, referenced to the computer clock.

1700-1702

1703-1716

R-OTHER, V-OTHER

$$
95-96 a
$$

Epoch measured in centiseconds (scaled seconds/2 2^{42}) from July 1 universal time which is (approximately) the beginning of the Nearest Besselian Year in question (usually the NBY during which launch occurs).

OWS state vector. The CMC's latest calculated state vector for the OWS. Words 52-54 contain the position coordinates, X, Y, and Z, scaled meters $/ 2^{29}$. Words 55-57 contain the velocity components; X, Y, and Z, scaled (meters/centisecond) $/ 2^{7}$. These parameters are calculated whenever the OWS state vector is permanently extrapolated or changed, as follows:

P00,P20 option $1,2,5$ - every 10 minutes to $C M$ state vector time.

P20 - upon entry (MINKEY) or after initial displays (non-MINKEY options 0, 4), then extrapolated for each mark; updated by each mark incorporation if OWS update option.

P27 - update of state vector.

V66 - state vector transfer.

Termination of Average-G.

1717-1732

This parameter is involved in two areas, R31/R34/P37 andR36. In either category it is scaled, meters $/ 2^{29}$. In R31/R34/P37,RANGE is the magnitude of the difference between the radius vectors of the two vehicles (CSM-OWS). In R36, RANGE represents the out-of-plane position for the CSM and is computed as $Y=\underline{r}_{C} \cdot\left\{\operatorname{UNIT}\left(\underline{v}_{W} \times \underline{r}_{W}\right)\right\}$. This item is calculated in P37 or whenever R31, R34 or R36 is selected by the astronaut via V83, V85, or V90. The displayed value can range from $000.00 \mathrm{n} . \mathrm{m}$. to $999.99 \mathrm{n} . \mathrm{m}$. Once the routine is selected, RANGE is recomputed in R31/R34/P37 until program termination ("PROCEED"); in R36 it is necessary to "RECYCLE" in order to have the value recomputed. The update rate in R31/R34/P37 is a function of what other jobs are running.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
2203-2204	HAPOX		28		

The altitude of the apogee above earth reference radius. Scaled meters $/ 2^{29}$. Calculated in R30 only.

RRATE

This parameter is involved in two areas, R31/R34/P37 and R36. In either category it is scaled (meters/centisecond)/2 ${ }^{7}$. In R31/R34/P37 it is defined as the range rate between the two vehicles (CSM-OWS) and is computed as $R=\left(\underline{v}_{W}-\underline{v}_{C}\right) .\left\{\right.$ UNIT $\left.\left(\underline{r}_{W}-\underline{r}_{C}\right)\right\}$. A negative quantity indicates closing. In $R 36$,
 This item is calculated in P37 or whenever R31, R34, or R36 is selected by the astronaut using verbs V83, V85, or V90. The displayed value can range from 0000.0 fps to 9999.9 fps . It is recomputed in $\mathrm{R} 31 / \mathrm{R} 34 / \mathrm{P} 37$ until program termination ("PROCEED"). In R36 it is necessary to RECYCLE in order to update the value, which is valid for an astronaut-selected time. The update rate in R31/R34/P37 is a function of what other jobs are running.

HPERX 29

PERIGEE. The altitude of the perigee above earth reference radius. Scaled meters $/ 2^{29}$. Calculated in R30 only.

95

This parameter is involved in two areas, RTHETA in R31/R34/P37 and RRATE2 in R36.

RTHETA. In R31/R34/P37 it is the angle from the local horizontal plane to either the CSM X-body axis (Noun 54 flashing) or to the SXT line of sight (Noun 53 flashing). The scaling is in degrees/360. This item is calculated in P37 or whenever R31 or R34 is selected by the astronaut via V83 or V85. It is computed in R31/R34/P37 until program termination ("PROCEED"). The update rate is a function of what other jobs are running.

RRATE2. Same as RRATE for R36 except velocity is for OWS.

The time of ignition of the NSR maneuver. Input in P34 (N13). Used to initialize state vector for CDHMVR subroutine. Calculated by P31, P32 and P33. Scaled centiseconds $/ 2^{28}$, referenced to computer clock.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
2462-2463	TNCC			33	

2630-2631	DELVTPF	31
	The requi scaled (

3010-3011

LAUNCHAZ 79

The clockwise angle from true north to the IMU stable member X axis, measured in the local horizontal plane and scaled degrees/360. The expected angles will range from $+72^{\circ}$ to $+108^{\circ}$ (approx.). The item is pad loaded and may be reloaded during P02, gyrocompassing program, via Verb 78E.

OGC, IGC, MGC

$$
74-76
$$

During R55 and during the gyro trim phase of R50, the X, Y, and Z gyro torquing angles. During coarse align, in P52 and P54, the desired gimbal angles (outer, inner \& middle), scaled degrees/360. During P50, the pseudo-docking angles (180- α, β, γ).
PACTOFF, $\underline{28} \underline{30}$ YACTOFF

The SPS engine gimbal-actuator trim angle estimates in the pitch and yaw planes (used to align the engine with the vehicle cg), scaled (seconds of arc) $/\left(85.41 \times 2^{14}\right.$). These values are added to the DAP filter output every DAP sample period as part of the engine gimbal servo command. The variation is usually less than ± 2 degrees over the course of a burn. These are equivalent to the upper halves of the double-precision registers, PDELOFF and YDELOFF. These items are set initially by astronauts in R03. They change significantly at the CSM "one-shot" correction time, which is about 3.4 seconds after ignition. For the CSM/LM DAP* configuration the "one-shot" occurs at TVC initialization and hence causes no change to PACTOFF or YACTOFF. Incremental changes are made every 0.5 second after the "one-shot" correction and an end-of-burn update is made following the engine shut-down command.

[^8]Information concerning the Docked DAP interfaces.

DAPDATR3 is packed with 5 octal digits of information as follows:

Bits	$15-13$	$12-10$	$9-7$	$6-4$	$3-1$
	AC-roll	XTAC	XTBD	PCTRL	YCTRL

(1) AC-roll: Roll jet selection
$0 \quad$ BD preferred
1 AC preferred
(2) XTAC: X-translation using Quads AC

0 No AC
1 Use AC
(3) XT BD: X-translation using Quads BD
$0 \quad$ No BD
1 Use BD
(4) PCTRL: Pitch control

0 Use torque couple control
1 Use Z force control
(5) YCTRL: Yaw control

0 Use torque couple control
1 Use Y force control

If both XTAC and XTBD are loaded 0 , no jets will fire in response to $\pm \mathrm{X}$ THC commands; if both are loaded 1 the autopilot will attempt to use all four quads.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ 3071

Docked DAP channel 5 jet inhibit. Contains octal sum of codes corresponding to channel 5 jets to be inhibited:

Docked DAP channel 6 jet inhibit. Contains octal sum of codes corresponding to channel 6 jets to be inhibited:

Jet Code no.

B1(9) 00001
B2(12) 00002
D1(11) 00004
D2(10) 00010
A1(13) 00020
A2(16) 00040
C1(15) 00100
C2(14) 00200

DKRATE
21b
$99 b$
21b

Docked DAP maneuver rate for both manual rotation and automatic maneuvers scaled (degrees $/ \mathrm{sec}$) $\left(450 \times 2^{-6}\right)$. For manual rotations it is the per axis rate. For automatic maneuvers it is the total command angular rate. This variable is normally loaded in R04 as R1 of N89.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
$\underline{3074}$	DKDB	22a	100a	22a	

Docked DAP deadband, scaled degrees/180. This variable is normally loaded in R04 as R2 of N89.

100b

Indicates whether CSM-alone or Docked DAP is operating. Set to 0 at start of CSM-alone DAP; set to 1 at start of Docked DAP.

Information concerning the CSM-Alone DAP interfaces:

DAPDATR1 is packed with 5 octal digits of information as follows:

Bits	$15-13$	$12-10$	$9-7$	$6-4$	$3-1$
	CONFIG	XTAC	XTBD	DB	RATE

(1) CONFIG: Configuration

0 No DAP or ENTRY DAP
1 CSM
$2 \mathrm{CSM} / \mathrm{LM}^{*}$
3 CSM/SIVB
6 CSM/LIM ASCENT STAGE ONLY*
(2) XTAC: X-translation using Quads AC

0 No AC
1 Use AC
(3) XTBD: X-translation using Quads BD
$0 \quad$ No BD
1 Use BD

[^9]| ECADR | Mnemonic | Powered | Coast \& Align | Rendezvous | Entry/
 Update |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3114-3115 | DAPDATR1, 2 (Cont.) | 82 | 82 | 82 | 82 |

(4) DB: Deadband
$0 \quad \pm 0.5$ degree
$1 \quad \pm 5.0$ degrees
(5) RATE: Response to RHC, Automatic maneuvers
$0 \quad 0.05$ degree/second
10.2 degree/second
20.5 degree/second
32.0 degrees/second

DAPDATR2 is packed with 5 octal digits of information as follows:

Bits	$15-13$	$12-10$	$9-7$	$6-4$	$3-1$
	AC-Roll	Quad A	Quad B	Quad C	Quad D

(1) AC-Roll: Roll jet selection

0 Use BD Roll
1 Use AC Roll
(2) A, B, C, D Quad fails
$0 \quad$ Quad Failed
1 Quad OK

LEMMASS
81a
81a
81 a
The current mass of the LM vehicle ${ }^{*}$, scaled kilograms/2 ${ }^{16}$. This is a pad load erasable and is not changed in normal use. The astronaut can change it, however, as part of the normal DAPDATA LOAD (R03, V48).

[^10]| ECADR | Mnemonic | Powered | Coast \& Align | Rendezvous | Entry/ Update |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3122 | CSMMASS | 81 b | 81 b | 81 b | 81b |

The current weight of the CSM vehicle, scaled kilograms/2 ${ }^{16}$. It is a pad load erasable which can be altered by the astronaut in R03 (V48). It is changed automatically every 2 seconds during P40 by S 40.8 if thrust is OK. This change consists of decrementing the parameter by 200 times the value of the pad-loaded quantity EMDOT, which represents the value of the SPS mass-flow rate in $\mathrm{kg} / \mathrm{cs}$.

A cell whose individual bits are used in monitoring the CSM-alone or Docked DAP.

Meaning

15 Bit set to 1 during R60 or R67 auto maneuver if high rate ($2 \mathrm{deg} / \mathrm{sec}$) has been specified in R03. Bit is reset to 0 at termination of auto maneuver.

14 Bit is set to 1 if rate estimates are not good and a repeat of the rate filter initialization is required. Bit is reset to 0 if the $G \& N$ is in control and the IMU data is usable. Approximately 1 second after bit is reset to 0 the rate filter initialization is complete.

13 Bit set 1 if the rate damping has not been completed on the roll axis. Bit is reset to 0 if the rate damping has been completed on the roll axis.

12 Bit set 1 if the rate damping has not been completed on the pitch axis. Bit is reset to 0 if the rate damping has been completed on the pitch axis.

11 Bit set 1 if the rate damping has not been completed on the yaw axis. Bit reset to 0 if the rate damping has been completed on the yaw axis.

10,9 Either or both bits are set to 1 when there has been a change in RHC roll command since the last DAP cycle. Additionally, the Docked DAP sets bit 9 to 1 to indicate the beginning or end of an automatic maneuver.

8,7 Either or both bits are set to 1 when there has been a change in RHC yaw command since the last DAP cycle. Additionally, the Docked DAP sets bit 7 to 1 to indicate the beginning or end of an automatic maneuver.

6,5 Either or both bits are set to 1 when there has been a change in the RHC pitch command since the last DAP cycle. Additionally, the Docked DAP sets bit 5 to 1 to indicate the beginning or end of an automatic maneuver.

4 Bit set 1 indicates that the AK values should be updated. Bit is reset to 0 to indicate that the NEEDLE DRIVE routine should be processed with the AK values which have been previously acquired.

3,2 If Bit 3 , Bit $2=11_{2}$ or 10_{2}, it is necessary to follow the initialization path of the NEEDLE DRIVE routine.

If Bit 3 , Bit $2=0_{2}$, it is necessary to follow pass 2 of the NEEDLE DRIVE routine.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
3130	RCSFLAGS (Cont.)	15b;65b	15b	15 b	15b
	Bit	Meaning			

If Bit 3, Bit $2=00_{2}$, it is necessary to follow pass 3 and greater paths of the NEEDLE DRIVE routine.

1 Bit is set 1 to indicate that the initial pass path in the T 6 program should not be followed. Bit is reset to 0 if the T 6 program should be initialized.

3162-3167 ADOT

Bits 15, 14, 13 DAPDATR1

XXX
001
010
110

WBODYs
OMEGACs for CSM-alone DAP scaled (rev/sec)/12.5 OMEGACs for CSM/LM DAP. Scaled (rev/sec)/6. 25.

Entry guidance* stores the following values into the se registers (all scaled deg/360):
3154 = ASKEP, Kepler range angle.
$3155=$ ASP1, final phase range angle.
3156 = ASPUP, Up-range angle.
3157 = ASPDWN, range angle down to PULL-UP.
3160-61 = ASP3 (double-precision) gamma correction range angle.

$11-13 ;$	$11-13 ;$	$11-13 ;$	$11-13 ;$
$61-63$	$\underline{61-63}$	$\underline{61-63}$	$61-63$

ADOTs (if CSM-alone or Docked DAP on) or OGARATE and OMEGABs (if TVC DAP on). ADOTs are DAP - measured vehicle body rates (i.e. the outputs from the CSM-alone or Docked DAP rate filter), roll, pitch and yaw, about the control axes. These axes are aligned with the RCS jet quads and, consequently, are rotated,

[^11]| ECADR | Mnemonic | Powered | Coast \& Align | Rendezvous | Entry/ Update |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3162-3167 | $\begin{aligned} & \text { ADOT } \\ & \text { (Cont.) } \\ & \hline \end{aligned}$ | $\begin{gathered} 11-13 ; \\ 61-63 \end{gathered}$ | $\begin{aligned} & 11-13 ; \\ & 61-63 \end{aligned}$ | $\begin{aligned} & 11-13 ; \\ & 61-63 \end{aligned}$ | $\begin{aligned} & 11-13 ; \\ & 61-63 \end{aligned}$ |

with respect to the NAV BASE axes, -7.25 degrees about +X . ADOTs are scaled (degrees/second)/450. OGARATE is the measured roll rate obtained by backdifferencing the outer gimbal angle (OGA) measurements every 0.5 second, scaled ($\mathrm{rev} / \mathrm{sec}$) $/ 2^{-4}$. This quantity will normally be near zero magnitude but a roll jet failed-on could produce $2-3^{\circ} / \mathrm{sec}$ rates. OMEGABs are the measured attitude rates about the pitch and yaw body axes, obtained by transforming the back-differenced CDU readings taken each DAP sample period. OMEGAYB is computed each pitch DAP pass; OMEGAZB is computed each yaw DAP pass. The first OMEGAZB value when the TVC DAP is started (or after a hardware restart) is measured over 1.5 DAP sample periods. The time sharing and scaling for OMEGABs are the same as for the OMEGACs. The maximum OMEGAB rate will be less than $5 \mathrm{deg} / \mathrm{sec}$.

NOTE: Even though OGARATE is computed and stored as a single precision quantity, it can be considered a double precision word in which the least significant half is always zero. This is insured by the TVC zeroing loop.

Entry powered flight uses these registers as follows scaled (centimeters/second)/ $\left(5.85 \times 2^{14}\right)$:

3162	$=$ XPIPBUF			
3163	$=$ YPIPBUF			
3164	$=$ ZPIPBUF		\quad	PIPA Buffers for TM during
:---:				
Entry. PIPs filed here every				
3165				

The CSM-alone or Docked DAP phase plane (roll, pitch, yaw) attitude errors scaled degrees/180. During steady state operation the magnitude of ERRORX, Y, and Z should be less than the attitude deadband, ADB. The RCS control axes, with which these errors are concerned, are rotated, with respect to the body axes, by -7.25 degrees about the $+X$ axis. The error values are calculated:

1. During CSM-alone or Docked DAP operation with CMC MODE switch in AUTO or HOLD, every 100 millisecs.
2. During CSM-alone or Docked DAP operation with CMC MODE switch in FREE, not updated.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
3220-3222	$\begin{aligned} & \text { ERRORX, Y, Z } \\ & \text { (Cont.) } \end{aligned}$	83-84a	83-84a	83-84a	66-67a
	Entry Roll DAP uses these registers as follows:				
	3220	$=\mathrm{VDT} / 180$, preselected drifting rate used by Roll DAP (0 = DAP in dead zone). Scaled (deg/sec)/90.			
	3221	$=-\mathrm{VT} / 180 \mathrm{E}$, minus roll rate used by the Roll DAP update cycle. Scaled (-deg/sec)/90.			
	3222	$=\mathrm{LCX} / 360$, the roll error (prior to reflection, if any) used by two second Roll DAP update cycle. Scaled deg/360. The value in this cell is used to initialize PAXERR1 (word 33a of Entry/Update list); however, PAXERR1 is updated each 0.1 second			
3223-3225	$\begin{aligned} & \text { THETADX, } \\ & \mathrm{Y}, \mathrm{Z} \\ & \hline \end{aligned}$	$\begin{gathered} 16-17 a ; \\ 66-67 a \end{gathered}$	$\begin{gathered} 16-17 a \\ 66-67 a \end{gathered}$	$\begin{gathered} 16-17 a ; \\ 66-67 a \end{gathered}$	$\begin{gathered} 16-17 a ; \\ 67 b-68 \end{gathered}$

During normal CSM-alone or docked DAP operation, when the CMC Mode switch is in AUTO or HOLD and there are no RHC commands, these registers contain the desired current, (i.e., of this DAP cycle opposed to final) roll, pitch, and yaw CDU angles, treated as 15 -bit unsigned fractions and scaled degrees/360. Thesequantities are used in the computation of phase plane attitude errors and are calculated as follows:

1. During automatic maneuvers they are updated every 100 milliseconds.
2. During attitude hold they are constants (the desired CDU angles to be held).
3. At the end of manual rate maneuvers, after rate damping is complete, THETADX, $Y \& Z$ are set to the current CDU angles.
4. During manual rate maneuvers and when in FREE mode the registers are not updated.

Entry programs use these registers as follows:

3223 = QAXERR, Pitch attitude error. Scaled degrees/180.
$3224=$ RAXERR, Yaw attitude error. Scaled degrees $/ 180$.
$3225=$ Q7,* high order register Minimum drag for
3226
= Q7,* low order register (in word 17 b)
UPCONTRL, scaled
$\left(\mathrm{ft} / \mathrm{sec}^{2}\right) / 805$.

[^12]| ECADR | Mnemonic | Powered | Coast \& Align | | Rendezvous |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| Entry/ |
| :--- |
| $3252-3253$ | | PCMD, | $\underline{29 ; 79}$ | | |
| :--- | :--- | :--- | :--- |

The pitch and yaw SPS engine gimbal-actuator position commands from the respective TVC DAPs, scaled (seconds of arc) $/\left(85.41 \times 2^{14}\right)$. The expected range of values is between ± 1 degree, while the maximum possible values are ± 6 degrees. They are calculated at every TVC DAP sample period: 40 ms for CSM, 80 ms for CSM/LM.*
$\underline{S L O P E} \quad \underline{19 a} \quad \underline{97 a}$

A DAP quantity specifying the slope of the phase plane boundaries, scaled ((degrees) second)/degree)/2.5.

ADB
$19 b$
97 b
$19 b$

The DAP deadband, scaled degrees/180. If the CSM-alone RCS DAP or the Docked DAP is actively in control and if the CMC MODE switch is in HOLD or AUTO, ADB is the deadband value being currently used by the DAP.

ALFA/ 180

The pitch attitude angle, used by Entry DAP and scaled, degrees/180. It is the third rotation of the $C M$ body triad in the Euler sequence R, β, α, and is about UBY. The value range is $\pm 180^{\circ}$ and is calculated each 0.1 second after the DAP is turned on in P62. Operation of such is indicated by a non-zero value in bit 12, flagword 6. (Bits 1 and 2 are also non-zero.)

BETA/ 180

The yaw attitude angle, used by Entry DAP and scaled degrees/180. It is the second rotation of the CM body triad in the Euler sequence R, β, α, and is about UBZ. The range is $\pm 90^{\circ}$ and is calculated each 0.1 second after the DAP is turned on in P62. This state is indicated by a non-zero value in bit 12, flagword 6. (Bits 1 and 2 are also non-zero.)

CMDAPMOD
18a; 69a

ENTRY DAP MODE. A 4-position switch specifying branching in Entry DAP, scaled 2^{-14}.

Set to " -1 " $(777768$) if entry equations sense drag in excess of 0.05 g .

[^13]| ECADR | Mnemonic | Powered | Coast \& Align | Rendezvous | Entry/ Update |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3331 | CMDAPMOD | | | | 18a; 69a |
| | (Cont.) | | | | |

Set to " -0 " $\left(77777_{8}\right.$) if the ALF A angle (pitch attitude) magnitude is greater than 135°.

Set to " $+1^{\prime \prime}\left(00001_{8}\right)$ if the ALF A angle magnitude is in the range 45° to 135°.
Set to " $+0^{\prime \prime}\left(00000_{8}\right)$ if the ALFA angle is less than 45°.
The expected value sequence would be $+1 \rightarrow+0 \rightarrow-1$. The value -0 , is not generally expected. This item is calculated each 0.1 second after the DAP is turned on in P62. Flagword 6, bits 12 and 2, indicates an active DAP.

18b-19;
69b-70 RREL

The single-precision roll, pitch and yaw rates, components of the CM angular velocity vector along the body X, Y, and Z axes and scaled (degrees/sec)/1800. All are corrected for $\dot{\gamma}_{E}$ if $\left|\dot{\gamma}_{E}\right| \geq \dot{\gamma}_{E}$ min. The expected range of values would be: PREL $\pm 20^{\circ} / \mathrm{sec}, \operatorname{QREL} \pm 4^{\circ} / \mathrm{sec}, \operatorname{RREL} \approx \pm 17^{\circ} / \mathrm{sec}$. These quantities are calculated each 0.1 sec after the DAP is turned on in P62.

Calculation of above rates is indicated by non-zero values in both bit 1 and bit 2 of flagword 6.

PAXERR1
33a

The CM roll attitude error in body axes generated by the DAP and displayed on the FDAI needle, scaled degrees $/ 360$. The error is integrated each 0.1 sec between 2 -second DAP updates. This quantity is the same as the item, AK, except for the scale factor, and is active only after the DAP is turned on in P62. A one in bit 12 of flagword 6 indicates such activity.

ROLLTM
33b; 83a

The roll attitude angle used by Entry DAP; scaled degrees/180. It is the first Euler rotation of the CM body triad about the negative relative velocity vector - UVA, along which UBX points. The value ranges $\pm 180^{\circ}$, is calculated after the DAP is turned on in P62 and is updated each 0.1 second during its operating period. Operation is indicated by a non-zero in bit 12 of flagword 6.

| $\underline{\text { ECADR }}$ | $\underline{\text { Mnemonic }}$ | Powered | Coast \& Align | Rendezvous |
| :--- | :--- | :--- | :--- | :--- | | Entry/ |
| :--- |
| $\underline{3346}$ |

The most significant half of roll attitude command issued by Entry Guidance equations and used by the Entry DAP, scaled degrees/360. The angle is defined as a rotation about the negative relative velocity vector, ${ }^{-} \underline{-}_{R E L}$. The value will range $\pm 180^{\circ}$ and is initially set in P62, based on HEADSUP, and holds until the drag exceeds 0.05 g . The quantity will be computed each 2 seconds after P64 until the velocity becomes less than $1000 \mathrm{ft} / \mathrm{sec}$ in P67.

The longitude of the entry target, scaled degrees/360. A positive quantity indicates East while a negative quantity denotes West. This parameter is pad loaded or DSKY loaded when P61 or P62 is in progress.
3404-3411 DELVSLV \quad 98-100 35-37

Impulsive delta V of the CSM in local vertical coordinates at the time of ignition. Vector, scaled (meters/centisecond)/ 2^{7}, is specified by the astronaut (V06N81), uplink, or one of the targeting programs.

| $3412-3413$ | $\underline{18}$ | $\underline{18}$ | $\underline{18}$ |
| :--- | :--- | :--- | :--- | :--- |

The time of ignition (prethrust) or time of cutoff (while thrusting). The changeover in definition for P40 occurs at ignition if an impulsive burn and at first TGOCALC (nominal TIG+2) if steering. This item is scaled, centiseconds/2 ${ }^{28}$. This parameter is calculated by P31, P32, P33, P34, P35, P36, and P38. P30 and P77 require TIG as an input. In P77, TIG is loaded with targeted ignition time. If the ignition time must be slipped (alarm 1703_{8}), P40 or P41 loads this word with the new ignition time. After ignition for an impulsive burn, TIG is loaded with predicted cutoff time, and after the first TGO calculation (long burn) TIG is loaded with the state vector time plus TGO. After the enter response to the flashing verb 97 (engine fail), the most significant half of TIG is set to -24_{8} and the least significant half remains unchanged.

ECADR	Mnemonic	Powered	Coast 8 Align	Rendezvous	Entry/ Update
3425-3426	DVTOTAL	33			
	Magnitude of the delta V accumulated since the start of Average-G. Scaled (meters/centisecond)/2 ${ }^{7}$.				
3427-3430	TGO	23			

The time to go until engine cutoff, scaled centiseconds $/ 2^{28}$. At TIG-5 for an impulsive burn ($\mathrm{TGO}<6$) it is calculated once to represent the time from ignition to engine cutoff. If the estimated maneuver time is greater than six seconds and active steering has been initiated, TGO becomes the length of the time from the last PIPA reading to engine cutoff. During a burn in which steering is used, TGO is calculated every two seconds from the start of steering until steering is stopped.

NOTE: TGO +1 is also set to the Δt to cutoff when the call to ENGINOFF is set up by the steering logic or by the computer short burn logic.

3547-3550 DHDSP
These seven registers contain, the time of the mark (TIME2, TIME1), scaled centiseconds $/ 2^{28}$, YCDU angle, optics shaft angle, ZCDU angle, optics trunnion angle and XCDU angle. This data is associated with the star indexed by BESTJ. XCDU, YCDU, ZCDU and the optics shaft angle are treated as unsigned 15-bit fractions, scaled degrees/360. The optics trunnion angle is scaled (degrees-19.7754)/45. The bias, 19.7754, is programmed-in.

When mark data is obtained using ATM star tracker, optics shaft and trunnion angles are replaced by tracker azimuth and elevation angles, respectively, also treated as unsigned 15-bit fractions, scaled degrees/360.

In P31, the computed altitude between the CSM and OWS orbits at NC2 time, scaled meters $/ 2^{29}$. In P32, the desired altitude (pad loaded erasable DHNCC) between the CSM and OWS orbits at NCC time, scaled meters $/ 2^{29}$.

MARK2DWN 24-27a

| ECADR | $\underline{\text { Mnemonic }}$ | Powered | Coast \& Align | Rendezvous |
| :--- | :--- | :---: | :---: | :---: | | Entry/ |
| :---: |
| $\underline{3575-3576}$ |
| Update |

In P31, the computed delta V magnitude at NCC time, scaled $(\mathrm{m} / \mathrm{csec}) / 2^{7}$. In P32, the computed delta V magnitude at NSR time, scaled ($\mathrm{m} / \mathrm{csec}$) $/ 2^{?}$.

The angle between the local horizontal plane of the CSM and the line of sight vector to the OWS at TPI. The scaling is degrees/360. This parameter is an input (N55) to P35 also to P31, P32, P33 and P34 (padloaded). Also set to 0 on final pass through P35 (computed TPI time option) in MINKEY if a new time was loaded in N37. The angle is measured in a counter clockwise rotation from the forward-direction path of the CSM (determined by the positive direction of the CSM's velocity vector) to the CSM-OWS line of sight vector. See Fig. 4.1-1 of Section 5 of this GSOP.

The time of TPI ignition for the rendezvous programs, scaled centiseconds $/ 2^{28}$. It is an input to P31, P32, P33, P34, and P35. It can be updated by P34 and will be computed by P35 if elevation angle is provided.

ECADR	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
$\underline{3654-3662}$	MARKDOWN	$\underline{20-23 a}$	$\underline{24-27 a}$		

These seven registers contain, in the following order: the time of the mark (TIME2, TIME1), scaled centiseconds/2 2^{28}, YCDU angle, optics shaft angle, ZCDU angle, optics trunnion angle and XCDU angle. This data is valid at the time an optics mark is taken in alignment or rendezvous programs. XCDU, YCDU, ZCDU and the optics shaft angle are treated as unsigned 15 -bit fractions, scaled degrees $/ 360$. The optics trunnion angle is scaled (degrees-19.7754)/45. The bias, 19.7754, is programmed-in.

For P51, P52, P53, and P54, this data is associated with the star indexed by BESTI. When mark data is obtained using ATM star tracker, optics shaft and trunnion angles are replaced by tracker azimuth and elevation angles, respectively, also treated as unsigned 15 -bit fractions, scaled degrees/360.

Altitude rate. The radial component of velocity (negative if descending), scaled (feet/sec)/(2 $\times 25766.1973$). This is a scalar component calculated in earth-centered reference coordinates. If bit 9, flagword 6 (RELVELSW) is zero, the velocity used is inertial. If bit 9, flagword 6 is a one, a velocity relative to air mass is used. The expected range of values runs from less than $-7000 \mathrm{ft} / \mathrm{sec}$ to $+1000 \mathrm{ft} / \mathrm{sec}$ and is calculated each 2 seconds after P63 until the end of P67.

ECADR	$\underline{\text { Mnemonic }}$	$\underline{\text { Powered }}$	Coast \& Align	
$\underline{3701-3702}$	THETAH Rendezvous	Entry/ Update		

The range between the present position and the estimated landing site, expressed as an angle and scaled, degrees/360. The expected value is less than 180°. It is calculated each 2 seconds after start of P63 until the end of P67. It is used in P61 for computing EMS display but is not on the Powered downlist.

UTPIT, UTYAW

98-99

Angles specifying the desired spacecraft axis (SCAXIS) for P20, scaled degrees/360.

VIO 57

These registers have two functions:

P61: VIO, the predicted entry velocity at the EMS altitude above the Fischer radius along a conic path from the present position, scaled (meters/centisecond) $/ 2{ }^{7}$. The value will be approximately $26,000 \mathrm{ft} / \mathrm{sec}$. (See Note 1 below.)

P64: LEWD,* UPCONTRL reference L/D. Scaled 2^{0} (max. value of 1.0).

TTE

These registers have two functions:

P61-P63: TTE, the time required to traverse the conic path from the present position to the specified EMS altitude above the Fischer ellipsoid, expressed as a negative number, counting down and scaled, centiseconds $/ 2^{28}$. The value is calculated in P61. It will be decremented every two seconds thru P63 and displayed via N63. (See Note 1 below.)

P64 through P67: L/DCALC, onboard estimate of L/D ratio. Scaled 2^{0} (max. value of 1.0). Exception: garbage if .05GSW $=0$ (bit 3 of Flagword 6). This will occur in P66 if a ballistic trajectory is flown. (P66 not expected for Skylab missions.)

[^14]| ECADR | Mnemonic | Powered | Coast \& Align | Rendezvous | Entry/
 Update |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3736-3737 | VPRED | | | | 58 |

These registers have two functions:

P61: VPRED, the predicted entry velocity at 400 K feet above the Fischer radius along a conic path from the present position, scaled (meters/ centisecond) $/ 2^{7}$. The value will be approximately $26,000 \mathrm{ft} / \mathrm{sec}$. (See Note 1 below.)

P64: VL*, exit velocity for UPCONTRL. Scaled (ft/sec)/(2×25766.1973).

GAMMAEI

These registers have three functions:

P61: GAMMAEI (single precision), the conic flight path angle between the inertial velocity and the local horizontal at the entry interface altitude of $400,000 \mathrm{ft}$ above the Fischer ellipsoid, scaled degrees/360. A minus quantity indicates that the flight path is below the horizontal plane. (See Note 1 below.)

GAMMAEI +1 (RTGO, single precision), the predicted range angle from the EMS altitude above Fischer radius to target along conic from present position, scaled degrees/360. (See Note 1 below.)

P64: GAMMAL * (double-precision), flight-path angle at VL. Scaled 2^{0} radians.

P67: PREDANG (single-precision), predicted range angle, final phase. Scaled revolutions $/ 2^{-3}$, where a revolution is $21600 \mathrm{n} . \mathrm{m}$.

JJ (single-precision), index in final phase, table look-up. Scaled 2^{-14}.
(Note 1: If the Recycle option (V32E) of N63 in P61 is exercised, this quantity is recalculated using the current state vector. However, only the result of the final calculation will appear on the Entry and Update list).

[^15]| ECADR | Mnemonic | Powered | Coast \& Align | Rendezvous | Entry/
 Update |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\underline{3753-3754}$ | $\underline{S V E C}+2$ | -75 | $\underline{30}$ | | |

The R27 range rate, either current or (during an optimization) converging, scaled (meters/centisecond)/2 ${ }^{6}$.

3765-3766. NC1TIG $\quad 74$

The time of ignition for the NC1 Rendezvous maneuver, scaled centiseconds $/ 2^{28}$. It is an input to P31.

3767-3770 NC2TIG $\quad 75$

The time of ignition for the NC2 Rendezvous maneuver, scaled centiseconds $/ 2^{28}$. It is computed in P31 and is an input to P32.
3771-3776 VGTIG $\quad \underline{95-97} \quad \underline{31-33}$

The predicted velocity (X, Y, Z) to be gained at TIG in reference coordinates, scaled (meters/centisecond)/2 ${ }^{7}$. During Lambert burns, the DELVEET3s from pre-thrust targeting are picked up and stored in VGTIG. External ΔV burns compute and store a rotated VG. It is calculated in burn programs: S 40.1 computes (X -DELV) or copies (LAMBERT) as part of pre-thrust computations.

Channel	$\underline{\text { Mnemonic }}$	Powered	Coast \& Align	Rendezvous	Entry/ Update
$\underline{0011}$	$\underline{\text { DSALMOUT }}$	$\underline{91 a}$	$\underline{91 a}$	$\underline{91 a}$	$\underline{91 a}$

Channel 11. A computer output channel whose individual bits are used for display parameter quantities and engine on-off control. A fresh start sets all bits to 0 . Processing of a verb 37 and a software restart both set bits 7-3 to 0 . V37 also sets bits 10 and 9 to 0 . A hardware restart sets all bits to 0 unless bit 7 of flagword $5=1$ in which case, bit 13 of this word will be set to 1 .

Bit Meaning

15-14 Not assigned.

13 SPS Engine on (set 1 in P40 to turn on SPS engine, set 0 to turn it off). Also set 0 if caging command received.

12-11 Not assigned.

10 Caution Reset signal (for display system lights). Set to 1 when an error reset key code (from uplink or DSKY) is received.

9 Test connector Outbit. Set 1 in accelerometer reading subroutine (READACCS, entered about 2 seconds after Average-G is "started" and each two seconds thereafter until bit 1 of Flagword $1=0$) and set 0 when Average-G is terminated (shortly after bit 6 of Flagword 7 is set 0).

8 Not assigned.

7 Operator error light (FLASH). Set 0 when an error reset key code (from uplink or DSKY) is received; set 1 if various procedural items (most of which are related to the DSKY, such as illegal noun/verb combinations) are not performed properly.
$6 \quad$ Flash verb and noun lights. Bit is set when an operator action is required (by program means, as a clue to the operator that a response is needed). See discussion of Flagword 4.

Channel	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
$\underline{0011}$	$\begin{aligned} & \text { DSALMOUT } \\ & \text { (Cont.) } \end{aligned}$	91a	91a	91a	91a

5 Key Release light (FLASH). Set 1 if program desires to use display system but external (DSKY or uplink) use of it is being made. Also would be set 1 if an internal or externally initiated monitor display had been started and then some DSKY button was depressed. It is lit if a request for operator response has been initiated and crew does not respond directly to it, but instead displays something else. Set 0 by key release keyboard input, and upon other instances (such as processing of an extended verb) when display system is released by the internal program.

4 Temperature Caution light. See bit 15 of IMODES30.

3 Uplink activity light. Set when an uplink interrupt is received; reset when an error reset key code is received, a key release key code, or at the termination of P27 (based on receipt of a proceed or terminate response). Bit is also set to 1 in R61 if an R60 maneuver is desired, but the maneuver is inhibited.

2 Computer activity light. Set 0 if no active Jobs are to be performed. During P00 probably will be 0 except during the periodic state vector update or gyro drift compensation. It will also be set to one intermittently during P00 if the CSM-alone or Docked DAP is active. Bit is not set 1 if a Task is performed, but instead left at its previous value.

1 ISS Warning light. See bits 13,12 , and 10 of IMODES30.

Channel 12. A computer output channel whose individual bits are used for control of optics/TVC and IMU hardware, and for control of the ISS. A fresh start zeroes all bits and then sets bits 6 and 4 to 1 if bits 6 and 4 of DSPTAB +11 D are both 1 . A hardware restart sets all bits to zero. A verb 37 clears bits $2,3,8,10,11,13$, and 14. A software restart does not change this channel, IMU caging zeros bits 8 , $6,5,4$, and 2.

Bit Meaning

ISS turn-on delay complete. Reset to 07.90 seconds after being set 1 at end of 90 second ISS turn-on delay.

Channel	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
0012	$\begin{aligned} & \text { CHAN } 12 \\ & \text { (Cont.) } \end{aligned}$	91 b	91 b	91 b	91b
	Bit	Meaning			

14 S4B Cutoff command. Bit set in P40 for backup of S4B cutoff whenever SPS cutoff is commanded.

13 S4B Injection Sequence Start. Not set by the program.

12 Not assigned.

11 Disengage optics Digital-to-Analog Converter. Bit set in TVC DAP preparations ($\$ 40.6$) at the start of the gimbal drive test or trim to avoid driving the optics system with TVC commands if optics had been left in the computer control. mode. Set to 0 when the TVC DAP is terminated.

10 Zero Optics. Not set by the program.

9 S4B Takeover Enable. Set to 1 following a V46E with bits 14-13 of DAPDATR1 $=1$ (for Saturn attitude control using RHC). Bit also set to 1 if bit 10 of Channel 30 is sensed as 0 in P11, meaning the Saturn control given to CMC.

8 TVC Enable. Set to 1 in P40 shortly after the response to checklist 0204_{8} code, in order to connect the output of the "optics" CDU digital-to-analog converters to the SPS gimbal servo amplifiers. Bit set 0 about 2.5 seconds after engine cutoff command (bit 13 of channel 11 set 0) in the following cases: normal cutoff, an enter or terminate response to a flashing V99N40 initiated at nominal ignition-5 seconds, an enter or terminate response to a flashing V97 initiated by thrust fail routine. Set to 1 in T4RUPT when optics mode is changed to manual and computer-driving of the optics is requested (OPTIND $=0$ or 1). Set to 0 , if present value is 1 , when leaving the manual mode or when terminating computer control of optics (OPTIND $=-0$ or -1).

7 Not assigned.

6 Enable IMU error counters. Set 1 during coarse align of IMU, and in order to permit output of error information to the FDAI attitude error needles (bit is set 0 on initialization pass, then set 1 ; the third pass is the first one with output to needles).

Channel	Mnemonic	Powered	Coast \& Align	$\underline{\text { Rendezvous }}$	Entry/ Update
0012	CHAN 12 (Cont.)	91b	91b	91b	91b

Bit Meaning

5 Zero IMU CDU's. Set to 1 to zero IMU CDU's. Set and reset in T4RUPT or V40E.

4 Enable coarse align of IMU. Set 1 to specify coarse align of IMU (cf. bit 6), and also if middle gimbal angle (i.e. CDUZ) exceeds 85°, except during Average-G when the "config" window of DAPDATR1 indicates Saturn configuration.

3 Not assigned.

2 Enable Optics CDU Error Counters. Set to 0 at start of SPS gimbal trim subroutine, then set 1 about 0.06 seconds after TVC Enable (bit 8 of this channel) set 1, for TVC control; and set 0 at the same time TVC Enable is zeroed, (approximately 2.5 seconds after SPS engine shutdown). In OPTMON routine (entered every 0.48 sec) it is set to 0 , then set to 1 about 0.06 sec later, whenever optics mode is changed to manual or $C M C$ and computer driving of the optics is requested (OPTIND $=0$ or 1). Set to 0 , if present value is 1 , when optics mode is changed to zero or when terminating computer control of optics (OPTIND $=-0$ or -1).

1 Zero Optics CDU's. Set 1 for about 0.2 seconds at the end of the optics zeroing sequence (cf. OPTMODES). Not needed for TVC purposes, of course, since these CDU's are optics inputs and TVC merely takes advantage of the digital-to-analog outputs assigned to "optics".

92a

Channel 13. A computer output channel whose outputs are used for miscellaneous purposes. Set to 0 by a fresh start or hardware restart. Processing of a verb 37 . first clears bits 8 and 9 in DUMMYAD and then clears bits 10 and 11 in STARTSB2, retaining the value of the remaining bits. A software restart clears bits 11 and 10 to zero and retains the value of the other bits.

Channel	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
0013	CHAN 13 (Cont.)	92a	92a	92a	92 a
	Bit	Meaning			

15 Bit set 1 to permit an internal computer clock (TIME6) to be counted down at a 1600 pps rate. This clock is used for control of jet on-times in CSM-alone DAP, Docked DAP, and the TVC Roll DAP, but is not used for the Entry DAP. When clock has counted down, bit is reset to 0 , and the desired program interrupt action initiated.

14 Reset input trap circuit 32 , concerned with bits 10-1 of channel 32. Bit not set in program.

13 Reset input trap circuit 31 B , concerned with bits 12-7 of channel 31. Bit not set in program.

12 Reset input trap circuit 31 A , concerned with bits 6-1 of channel 31 . Bit not set in program.

11 Enable Standby. Set to 1 in P06 after the clock has been read and reset to 0 by powering up the computer after the standby operation.

10 Test DSKY lights. Set 0 by an error reset keycode input; set 1 for about 5 seconds if a verb 35 input is received.

9 Not assigned.

8 Not used (assigned to "BMAG output enable").

7 Telemetry word order code bit. When channel is telemetered, should have a value of 1 (bit 0 only for words 1 and 51).

6 Block inputs to uplink cell. Not set by program.

5 Not used (connects an alternate input to uplink cell).

4 Range Unit activity.

3 Range Unit Select a.

Channel	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
0013	CHAN13 (Cont.)	92a	92a	92 a	92a
	Bit Meaning				
	2 R	ect b.			
	1 R	ect c.			
	Note: Range li the quan	4 are sh quantit n order to	ed control func o cell 0046_{8} (RN this control.	for sampling . These bits	the VHF t contain
0014	CHAN14	92 b	92b	92b	92b

Channel 14. A computer output channel whose outputs are used for control of computer counter cells. Set 0 by a fresh start or hardware restart. Processing of a verb 37 or software restart does not change this channel setting. An IMU cage command zeros bit 15-6.

Bit

11 Same as bit 12, but for optics shaft or TVC pitch axis.
Bit set to 1 to cause output pulses from cell used to drive X-axis IMU CDU error counter (IMU X-axis coarse align or error needle for roll axis). Bit reset to 0 after counter cell reduced to 0 (3200 pps): bit 6 of channel 12 must be set to load error counter.

Same as bit 15 , but for Y-axis (pitch).

Same as bit 15 , but for Z-axis (yaw).

Bit set to 1 to cause output pulses from cell used to drive optics trunnion or TVC yaw axis. Bit reset to 0 after counter cell reduced to 0 (3200 pps): bit 2 of channel 12 must be set to load error counter.

Bit set 1 to generate gyro torquing pulses, and reset to 0 when required number produced. Is set when pulse torquing of gyros performed (for IMU compensation or for pulse torquing in P52 or P54 following acceptance of V06N93 display) or during gyro trim phase of R50. Bit also set to 1 in GYCRS (pulse torque coarse aligning in P52/P54).

Channel	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update
0030	CHAN 30 (Cont.)	93a	93a	93a	93a

11 Bit sensed as 0 if an IMU cage command generated by the crew (see bit 11 of [MODES30).

10 Bit sensed as 0 if control of Saturn given to computer.

9 Bit sensed as 0 if IMU turned on and operating with no malfunctions (see bit 9 of IMODES30).

8 Not assigned.

7 Bit sensed as 0 if an optics CDU fail indication produced (see bit 7 of OPTMODES).

6 Bit sensed as 0 if guidance reference release signal produced: bit not sensed by program.

5 Bit sensed as 0 if liftoff signal produced (used to cause termination of P02 and initiation of P11, a function that can alternatively be initiated by V75E).

4 Bit sensed as 0 if $54 B$ separation/abort signal produced: bit not sensed by program.

3 Bit sensed as 0 when preparations for use of the SPS engine ("SPSready") is complete. This bit is not sensed by the flight program.

2 Bit sensed as 0 if $C M / S M$ separation signal produced: bit not sensed by program.

1 Bit sensed as 0 if "ullage thrust present" (from Saturn): bit not sensed by program.

CHAN 31
93 b
93 b
$93 b$
93b

Channel 31. A computer input from crew control devices, used by CSM-alone or Docked DAP.

Channel	Mnemonic	Powered	Coast \& Align	Rendezvous	Entry/ Update.
0031	CHAN31 (Cont.)	93b	93 b	93 b	93b
	Bit	ng			
	$15 \begin{aligned} & \text { B } \\ & \\ & \\ & \\ & \\ & \\ & \text { ha }\end{aligned}$	0 if compu mes 1 if I r twisted	control of space ned off, SCS sp kwise direction	("G\&N autop aft control,	ontrol"). anslation
	14	0 if "Free	selected.		
	13	0 if "Hold $i c^{\prime \prime}$ mode	selected. If b d.	$-13 \text { are } 112,$	indicates
	12 B	0 if transl	n - Z direction	anded.	
	11 B	0 if transl	n +2 direction	anded.	
	10 B	0 if transl	n -Y direction	anded.	
	$9 \quad \mathrm{~B}$	0 if transl	$\mathrm{n}+\mathrm{Y}$ direction	anded.	
	8 B	0 if transl	$\mathrm{n}-\mathrm{X}$ direction	anded.	
	$7 \quad$ B	0 if transl	n +X direction	anded.	
	6	0 if rotati	egative roll dir	commanded	
	5	0 if rotati	ositive roll dir	commanded	
	4	0 if rotati	egative yaw dir	commanded	
	3	0 if rotati	ositive yaw dir	commanded	
	2 B	0 if rotati	egative pitch di	n commande	
	1 B	0 if rotati	ositive pitch di	n commanded	

| Channel | Mnemonic | Powered | $\underline{\text { Coast \& Align }}$ | | Rendezvous |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| Entry/ |
| :---: |
| Update |

Channel 32. A computer input channel for additional crew input to CSM-alone or Docked DAP, etc.

Bit Meaning

15 Not assigned.

14 Bit sensed as 0 if "proceed key" (formerly standby button) is depressed (see bit 14 of IMODES33).

13-7 Not assigned.

6 Bit sensed as 0 if negative roll commanded by minimum impulse controller.

5 Bit sensed as 0 if positive roll commanded by minimum impulse controller.

4 Bit sensed as 0 if negative yaw commanded by minimum impulse controller.
3 Bit sensed as 0 if positive yaw commanded by minimum impulse controller.
2 Bit sensed as 0 if negative pitch commanded by minimum impulse controller.
1 Bit sensed as 0 if positive pitch commanded by minimum impulse controller.
$\underline{\text { CHAN33 }} \quad \underline{94 \mathrm{~b}} \quad \underline{94 \mathrm{~b}} \quad \underline{94 \mathrm{~b}} \quad \underline{94 \mathrm{~b}}$

Channel 33. A computer input channel for hardware status and command information. Bits 15-11 are flip-flop bits (which are reset by a channel "write" command) that are also reset when a restart is encountered.
$\underline{\text { Bit } \quad \underline{M e a n i n g ~}}$

15 Bit sensed as 0 if the computer oscillator has stopped.
14. Bit sensed as 0 if a computer warning is produced. If bits $15-14=10{ }_{2}$, it is concluded that a restart loop exists and a fresh start is done.
Mnemonic
CHAN33
(Cont.)

Powered
Coast \& Align
Rendezvous
Entry/ Update
$94 b$
$94 b$ $94 b$

Bit Meaning

13 Bit sensed as 0 if an accelerometer fail indication produced (PIPA fail). (See bit 13 of LMODES33).

12 Bit sensed as 0 if a telemetry end pulse rejected (downlink interrupt rate excessive). (See bit 12 of IMODES33).

11 Bit sensed as 0 if an uplink input bit is rejected, indicating an excessive uplink rate. (See bit 11 of IMODES33).

10 Bit sensed as 0 if spacecraft switches set by crew so as to inhibit uplink inputs from being loaded into erasable memory (and subsequently generating an uplink interrupt). The bit reads a binary 1 when the "accept uplink" signal is present at the interface.

9-6 Not assigned.

5 Bit sensed as 0 if computer control of optics is set. (See bit 5 of OPTMODES).

4 Bit sensed as 0 if zero mode is set. If bits 5-4 are both 1 , the manual mode is selected. (See bit 4 of OPTMODES.)

3 Not assigned.
$2 \quad$ Bit sensed as zero if the Range Unit data is good.

1 Not assigned.

Channel 77. A computer output channel, the individual bits of which are used to indicate the source of a hardware restart and/or AGC warning. The channel is initialized to 0 by a V36E (request fresh start). The channel will be zeroed by the final V33E on a P27 state vector uplink and also by a crew or ground V21N10E77EE. Should a hardware restart occur, one of the bits in the channel would be set to 1 indicating the source. If multiple restarts occur, more than one bit could possibly

be left set afterwards (i.e., if they were different types). Many restarts of the same type would leave just one bit set with the register REDOCTR indicating the number. The bit definitions are:

Bit	Restart (and/or AGC warning) Cause
$15-10$	Spare
9	Scalar double frequency
8	Scalar fail
7	Counter fail
6	Voltage fail
5	Night Watchman
4	Rupt Lock
3	TC Trap
2	E-memory parity fail
1	E or F-memory parity fail

Note: A restart due to oscillator fail is not shown in this channel.

The following table is taken directly from the current program listing.

Flag name	Bit and Flag	Flag name	Bit and Flag		Flag name	Bit and Flag		
. 0505 N	BIT 3 FLAG 6	INFINFLG	BIT	7 FLDG 8	PRITDFLG	BIT		FLAS 4
3605 w	BIT 1 FLAG 8	INRLSW	BIT	5 FLAG 6	PRCNVFLG	HIT		FLAS 4
$3 \triangle$ XISFLG	BIT 6 PLAG 5	INTFLAG	BIT	14 FLAG 10	PTVG3FLG	BIT	4	FLAG 10
45.46 FLG	BIT 6 FLAG 3	INTYPFLG	BIT	4 FLAG 3	QUITFLAG	BIT	5	FLAG
5J0**FLG	BIT 12 FLAG 3	ITERFLG	BIT	13 FLAG 2	R2IMARK	RIT		flar ?
501% FFLG	RIT 11 FLAG 3	ITSWICH	BIT	14 FLAG 7	R22CAFLG	BIT	7	FLAG 9
APSESA	BIT 5 FLAG 8	JSWITCH	BIT	14 FLAG 0	R27FLAG	BIT	12	Flag 11
CSTNFLAG	EIT 12 FLAG 7	LATSW	BIT	4 FLAG 6	R27!191	BIT		FLAG 11
\triangle TMELAC	BIT 11 FLAG 0	MANEUFLG	BIT	5 FLAG 10	R27!P?	QIT	$?$	FLAG 11
\triangle TTCHFLS	BIT 2 FLAG 7	MAPKFLG	BIT	4 FLAG 1	R31FLAG	BIT	4	FLAG?
AUTOSED	RIT 7 FLAG 10	MAXDEFLG	BIT	12 FLAG 9	- 53 FLAG	GIT	6	flato
AVESFLAG	BIT 1 FLAG 1	MIDIFLAG	BIT	3 FLAG?	RGTFLAC	315	2	Flef,
AVIMIDSW	BIT 1 FLAG 9	MIDAVFLG	BIT	2 FLAG 9	REFSMFLG	BIT	12	FLAS,
AIIMELAG	BIT 8 FLAG 11	MKOVFLAG	BIT	3 FLAG 4	REINTFLG	BIT	13	FLAG 10
CALCMAN?	BIT ? FLAG 2.	MRKIDFLG	BIT	15 FLAG 4	PEJCTFLG	BIT		flar, 10
CMSAPARM	BIT 12 FLAG 6	MRKNVFLG	BIT	9 FLAG 4	RELVFLSW	BIT		flacs 6
Catosiay	BIT 2 FLAG 6	MRUPTFLG	BIT	5 FLAG 4	RENDWFLG	BIT	1	FLAG5
cogafiag	BIT 4 FLAG 8	MWAITFLG	BIT	11 FLAG 4	REVFLAG	RIT	5	FLAG?
c Jltflat	BIT 7 FLAG 3	N220RN17	BIT	6 FLAG 9	RNDVZFLG	BIT	7	FLAG O
CYCLFLAG	BIT 11 FLAG 11	NT7FLAG	BIT	- FLAG 11	PVSW	BIT	9	flag 7
Crcsiflg	BIT 4 FLAG 0	NC12FLG	RIT	5 flag 0	SBFLAG	4 IT		FLAG 2
DAPBITI	BIT 15 FLAG 6	NCINTFLG	BIT	2 FLAG 0	SKIPVIF	EIt		$F L A G$?
CAP3IT2	BIT 14 FLAG 6	NCLPFLG	BIT	9 FLAG 1	SLOPESN	317	3	FLAG 1
oimoflar,	BIT 1 FLAG 3	NEEDLFLG	BIT	9 FLAG 0	SNAPELAT,	BIT	6	FLAG 11
SRIFTFLG	BIT. 15 FLAG ?	NEWIFLG	BIT	13 FLAG 8	SOLNSW	BIT		FLAG 5
OSKYFLAG	BIT 15 FLAG 5	NEWTFLAG	BIT	10 FLAG 5	SOURCFLG	BIT	8	FLAG 9
ESSN	BIT 8 FLAG 6	NJETSFLG	BIT	15 FLAG 1	STATEFLG	BIT	5	FLAG 3
FNG2FLAG	BIT 11 FLAG 1	NDDOFLAG:	BIT	1 FLAG 2	STEERSW	QIT		FLAG 2
ENGONFLG	BIT 7 FLAG. 5	NODOPOI	BIT	12 FLAG 1	STIKFLAG	BIT		flar 1
FNTRYOSP	BIT 13 FLAG 6	NORMSW	BIT	10 FLAG 7	STRULLSW	RIT	13	FLAG 6
ERADFLAG	BIT 13 FLAG 1	NOSWITCH	BIT	7 FLAG 6	SWTOVER	BIT	15	FLAG 9
ETPIFLAG	BIT 7 FLAG 2	NOUNFLG	BIT	10 FLAG 11	TARGIFLG	BIT		flag 1
EXTRANGE	BIT 9 FLAG 10	NRMIDFLG I	BIT	13 FLAG 4	TCOMPFLG	BIT	S	FLAG 10
FINALFLG	BIT 6 FLAG 2	NRMNVFLG	BIT	8 FLAG 4	TDFLAG	BIT	3	Flag 1.1
FIRSTFLG	BIT 7 FLAG 2	NRUPTFLG	BIT	4 FLAG 4	TERMIFLG	BIT		FLAG 7
FIXFLAG	BIT 7 FLAG 11	NWAITFLG	BIT	10 FLAG 4	TFFSW	BIT	1	FLAG 7
FREEFLAG	BIT 3 flag 0	ORDERSW	BIT	6 FLAG 8	TIMRFLAG	BIT		FLAT 7
CULTKFLG	BIT 2 FLAG 10	P2IFLAG	BIT	12 FLAG 2	TPIMNFLG	BIT	3	flag 10
GAMOIFSW	BIT 11 FLAG 6	P25FLAG	BIT	4 FLAG 11	TRACKFLG	BIT	5	flag 1
glokfail	BIT 14 FLAG 3	P29FLAG	BIT	1 FLAG 0	UPDATFLG	HIT		FLAG 1
GONERY	BIT 8 FLAG 7	P35FLAG	BIT	8 FLAG 10	UPLDCKFL	BIT	4	FLAG 7
GONEPAST	BIT 10 FLAG 6	P48FLAG	BIT	5 FLAG 11	UTFLAG	BIT	9	FLAG 8
GRRBKFLG	BIT 5 FLAG 5	P50FLAG	BIT	10 flag 0	V37FLAG	BIT		FLAG 7
GUESSW	BIT 2 FLAG 1	P50.1FLG	BIT	12 FLAG 0	$V 50 N 18 F L$	BIT		FLAG 3
GYMDIFSW	BIT 1 FLAG 6	P55.1FLG	BIT	13 FLAG 0	V960NFLG	BIT	3	FLAG 8
HDSUPFLG	BIT 11 FLAG 10	PCFLAG	BIT	1 FLAG 10	VEHUPFLG	BIT	8	FLAG 1
HINO	BIT 6 FLAG 6	PCMANFLG	BIT	15 FLAG 10	VERIFLAG	BIT	3	FLAG 7
IDLEFAIL	BIT 6 FLAG 1	PDSPFLAG	BIT	12 FLAG 4	VFLAG	BIT		FLAG 3
1 GNFLAG	BIT 13 FLAG 7	PFRATFLG	BIT	4 FLAG 2	VHFRFLAG	BIT	9	FLAG 9
IMPULSW	BIT 9 FLAG 2	PINBRFLG	BIT	6 FLAG 4	VINTFLAG	BIT	3	flag 3
IMUSE,	BIT 8 FLAG 0	POCFLAG	BIT	9 FLAG 3	VNFLAG	BIT	2	FLAG 4
INCORFLG	BIT 11 FLAG 5	PRECIFLG	BIT	8 FLAG 3	XDEL VFLG	BIT	8	FLAG 2
					XDSPFLAG	BIT	1	FLAG 4

2.5.2 Flagbit Definitions

N
\vdots

2. 6 Effects of Fresh Start (V36) and Hardware Restart on Flagword and Channel Bits

Flagword	Downlist Word	Fresh Start (V36)					Hardware Restart				
		15-13	12-10	987	654	321	15-13	12-10	987	654	321
0	40	000	000	000	000	000	UUU	UUU	UUU	UU0	UUU
1	40	000	U00	000	000	000	UUU	UUU	UUU	UC0	UUU
2	41	000	000	000	000	000	COU	0U1	UUU	U0U	UUU
3	41	00U	000	000	000	000	UUC	UUU	UUU	UUU	UUU
4	42	000	000	000	000	000	000	000	000	000	000
5	42	000	000	000	000	000	UUU	UUU	UUU	UUU	UUU
6	43	000	000	000	000	100	UUU	UUU	UUU	UUU	UUU
7	43	000	000	000	000	000	UUU	UUU	UUU	UUU	UUU
8	44	000	000	000	000	000	UUU	UUU	UUU	UUU	UUU
9	44	000	000	000	000	000	UUU	UUU	UUU	UUU	UUU
10	(varies)	000	0U0	000	000	000	U0U	UUU	UUU	UUU	UUU
11	(varies)	000	000	000	000	000	UUU	UUU	UUU	UUU	UUU
Channel	Downlist Word		Fresh	Start	(V36)			Hardw	are R	estart	
11	91	000	000	000	000	000	00+	000	000	000	00 U
12	91	000	000	000	*0*	000	000	000	000	*0\%	000
13	92	000	000	000	000	000	000	000	000	000	000
14	92	000	000	000	000	000	000	000	000	000	000
30	93	UUU									
31	93	UUU									
32	94	UUU									
33	94	UUU	UUU	UUU	UUU	UUU	111	11 U	UUU	UUU	UUU
77	(varies)	000	000	000	000	000	UUU	UUU	RRR	RRR	RRR

KEY: $\quad 0$ - Bit set to 0
1 - Bit set to 1
U - Bit unchanged

* - If IMU was in Coarse Align, set bits 4 and 6 , otherwise reset to 0
+ - Set to 1 if ENGONFLG is on, otherwise reset to 0
C - Bit set to 0 if IMU was in Coarse Align otherwise unchanged.
R - Set 1 if this bit indicates cause of restart, otherwise unchanged

B L A N K

Appendix A
PCR-PCN Checklist

The preparation of this issue of GSOP Section 2 reflects the implementation of the Skylark Program PCRs and PCNs listed below.

PCR/PCN	Title
003	Improved Short Burn Logic
004	Deletion of Verb 94
005	Deletion of Verb 59
006	Deletion of Verb 52
007	Deletion of Verbs 44 and 45
008	Routine 57 Deletion
010	Routine 05 Deletion
011	Programs 72-79 Deletion
013	Deletion of Lunar Surface Alignment Option
014	Program 39 Deletion
015	Program 38 Deletion
016	Program 37 Deletion
017	Program 23 Deletion
018	Program 22 Deletion
019	Program 24 Deletion
021	Program 32 Deletion
022	Lock Out Moon Midcourse Perturbations
025	Extended Range Capability
030	Addition of NCC Maneuver Computation Capability
032	VHF Range Rate Computation and Display
035	Add TEPHEM to the Coast and Align Downlist
036	Compute ATM Star Tracker Gimbal Angles
040	Skylab Digital Autopilot
042	Skylab Four Maneuver DKI Sequence
048	Conversion of RCS DAP Phase Plane Fixed Memory Constants to Erasable Load
051 REV 1	Skylark Downlist Changes
400	Program 15 Deletion
402	Eliminate 481 day TEPHEM limitation in Lunar-Solar Ephemerides Routine
405	Transform Optics Angles to Tracking Angles
409*	Modification to PCR SL022

[^16]| PCR/PCN | Title |
| :---: | :---: |
| 410* | Delete Lunar Capability |
| 411* | Delete HAM Targetting Program |
| 412\% | Delete ECSTEER |
| 413 | ATM Orientation Determination Program (P50) |
| 414 | Docked Alignment Capability in P51 |
| 415 | Docked Alignment Capability in P52 |
| 416 | Add Gyro Trim to R50 |
| 417* | Deletion of 9 Dimensional Capability |
| 422* | Initialize Rendezvous Navigation to Update the CSM State Vector |
| 423 | Change Conic to Precision Integration in All Rendezvous Targetting Programs |
| 424 | Improve Minkey Gyro Torquing Logic |
| 428 | Modification of Skylark Memo \#14: Preliminary Skylab Rendezvous Targeting Plan for the Skylab GSOP |
| 431 | R04 Roll Preference Specification |
| 434 | Correct $\alpha_{\text {ATM }}$ in P50 |
| 435* | Do Not Automatically Take VHF in P20 |
| 436* | Nominal Use of ATM Sources in P52 and P54 |
| 438* | Incorrect Star Tracker Angle in P55 |
| 439 REV 1 | VHF Range Rate Filter Enable/Disable by Extended Verb |
| 442 * | Modification to R22 |
| 448 | Modification No. 4 to Skylark Memo No. 14 |
| 449 | Forced firings for docked DAP auto maneuvers |
| 452 | Precision Integration for V90 |
| 454 | Docked DAP Alarm Codes |
| 455* | Change to P35, P36 and R00 to Fix Anomaly ART 07 |
| 456\% | Zeroing HOLDFLAG |
| 459 | VHFR Changes |
| 464 | Set NN = 0 in P35 |
| 467* | Change VHFTIME to MARKTIME on the Powered Downlist |

[^17]
SKYLARK 1 (GSOP)

R693

Internal Distribution List

Group 2311	R. Shanc	1117-272	(3)
	Cook Kossuth	$\mathrm{O}^{\prime} \mathrm{Connor}$	
Group 23N	G. Grover	DL11-201	(4)
	Blanchard Johnson	Ogletrec Parr	
Group 23P	E. Talbot	DL.7-252	(2)
	Greene	Stubbs	
Group 23P	B. Hwoschinsky	DL7-203	(2)
	Battin	Copps	
Group 23S	P. Amsler	DL7-240	(18)
	Adamis Edmonds	McOuat Megna	
	Felleman	O'Donnell	
	Goodwin	Sheridan	
	Grace	Silver	
	Heinemann	St. Amand	
	Kido	Werner	
	Lawrence	White	
	Lones	Woolsey	
Group 23	D. Farrell	DL7-283	(1)
	Lawrence		
Group 33	F. Harding	DL7-111	(3)
	Drane Glick	Mimno	
APOLLO Library			(2)
CSDL Technical Documentation Center			(2)

External Distribution List

SKYLARK 1
Charles Stark Draper Laboratory (5)
P. O. Box 21025
Kennedy Space Center
Attn: Mr. R. O'Donnell
Charles Stark Draper Laboratory (3)
Code EG/MIT Building 16
NASA Manned Spacecraft Center
Houston, Texas 77058
Attn: Mr. G. Silver
NASA MSC HW(10)Building M7-409Kennedy Space CenterFlorida 32815
Attn: Mr. F. Hughes
Delco Electronics Division (2)
Milwaúkee, Wisconsin 53201
Attn: Mr. J. Stridde, Dept. 42-02
Mr. W. Siarnicki, Dept: 94-02
Building 2-C
Delco Electronics Division (2)P. O. Box 21027Kennedy Space CenterFlorida 32815
Attn: Mr. J. Kaiser
Delco Electronics Division (1)
P. O. Box 265
Bethpage, Long Island
New York 11714
Attn: Mr. D. Dettmann
Delco Elcetronics Division (1)
P.O. Box 734Downey, California 90241
Attn: Mr. D. Karstedt
Kollsman Instrument Corporation (1)
575 Underhill l3oulcevard
Syosset, Long lsland
New York
Attn: Mr. l'. Mc:Coy

NASA/HDO	NASA Headquarters	(2)
	600 Independence Avenue SW :	
	Washington, D. C. 20546.	
	Attn:	
	Mission Dircetor, Code MA (1)	
	Robert Aller, Code MAO (1)	
NASA/LEWIS	National Aeronautics and Space Administration	(2)
	Lewis Rescarch Center	
	Cleveland, Ohio 44135	
	Attn: Library	
NASA/FRC	National Aeronautics and Space Administration	(1)
	Flight Research Center	
	Edwards AFB, California 93523	
	Attn: Research Library	
NASA/LRC	National Aeronautics and Space Administration	(2)
	Langley Research Center	
	Langley AFB, Virginia 23365	
	Attn: Mr. A. T. Mattson	
NAR/KSC	Kennedy Space Center	(1)
	Florida 32815	
	M.S.O.B.	
	North American Mail Station ZK69	
	Attn: Mr. D. Matteson	
$\begin{aligned} & \text { NASA/RASPO } \\ & \text { GAC } \end{aligned}$	National Aeronautics and Space Administration	(1)
	Resident APOLLO Spacecraft Program Officer	
	Grumman Aerospace Corporation .	
	Bethpage, Long Island .	
	New York 11714	
NASA/WSMR		(2)
	National Aeronautics and Space Administration	
	Post Office Drawer MM	
	Las Cruces, New Mexico 88001.	
	Attn: RH4 Documentation	

[^0]: * It is possible to update when program lights are blanked by a FRESH START (MODREG is 77777_{8}).
 ** "ERROR RESET" must be sent via uplink to set BIT4 of FLAGWRD7 to zero. DSKY "ERROR RESET" has no effect. :

[^1]: *A 0 or -0 will update the UPSVFLAG erasable but the CMC will not perform a state vector update. Any positive non-zero quantity is interpreted as a CSM state vector update; any negative non-zero quantity is interpreted as an OWS state vector update.

[^2]: * Refer to Paragraph 2.1.6 to obtain the absolute address (ECADR) for this UPDATE.

[^3]: * Refer to Paragraph 2.1.6 to obtain the absolute address (ECADR) for this UPDATE.

[^4]: * Refer to paragraph 2.1.6 to obtain the absolute address(ECADR) for this UPDATE.

[^5]: * Refer to paragraph 2.1.6 to obtain the absolute address (ECADR) for this UPDATE.

[^6]: * Refer to paragraph 2.1.6 to obtain the absolute address(ECADR) for

[^7]: *Not expected to be computed for SKYLAB missions.

[^8]: * The LM-CSM docked configuration option exists in the SKYLARK program, although it will not be exercised for SKYLAB missions.

[^9]: * The LM-CSM docked configuration'option exists in the SKYLARK program, although it will not be exercised for SKYLAB missions.

[^10]: *

 The LM-CSM docked configuration option exists in the SKYLARK program, although it will not be exercised for SKYLAB missions.

[^11]: * This portion of Entry programs not expected to be exercised for SKYLAB missions.

[^12]: * Not expected to be computed for SKYLAB missions.

[^13]: * The LM-CSM docked configuration option exists in the SKYLARK program, although it will not be exercised for SKYLAB missions.

[^14]: *Not expected to be computed for SKYLAB missions.

[^15]: *Not expected to be computed for SKYLAB missions.

[^16]: *PCN

[^17]: PCN

