NAME AND POSITION	FUNCTION
COMPUTER Control Panel COMPUTER Mode Switch A. PRE LN - (Prelaunch)	 (a) Provides capability to verify computer memory usin AGE equipment on the pad. (b) Performs diagnostic check of computer logic function.
ASC - (Ascent)	 (a) Program is automatically started at T = 0 (lift-off). Solves the ascent equations and provides the backup guidance during ascent and insertion. The FDI's can indicate S/C RATES or attitude errors via the computer. (Selected by the secondary guidance switchover.) (b) Automatically displays the ΔV on the Fwd-Aft IVI needed for correct insertion at SSEC0 + 20 sec for firing the OAMS thrusters, and biases the FDI's to null when the S/C is 0°, 0°, 0°.
CTCH - UP - (Catoh-up)	Enables the computer to provide pointing commands on the FDI's for S/C alignment and velocity informa- tion on the IVI's for controlled application of translation maneuvers.
	POSITION COMPUTER Control Panel COMPUTER Mode Switch A. PRE LN - (Prelaunch) Computer Mode Switch A. PRE LN - (Prelaunch) CTCH - UP -

NAME AND POSITION	FUNCTION
RNDZ (Rendezvous	 (a) Enables computer to use radar and platform data to compute △V's needed for thrusting for rendezvous. △V's are displayed on the IVI. (b) Enables computer to drive △V display up or down toward zero as a thrusting is being made via closed loop with accelerometer output.
RE-ENT - (Reentry)	 (a) Enables computer to solve reentry equations and will display commanded roll attitude and down range and cross range touchdown point errors with the FDI's. (b) Enables computer to display desired roll attitude on the roll FDI for the desired lift. (c) Enables computer to display on the IVI the ΔV achieved from retrofire. (d) Provides the signals for the ACME reentry attitude control mode (automatic).
B. START - (Computer Switch)	 (a) Initiates CATCH-UP, REENTRY programs and starts "closed loop guidance" computations in RNDZ. (b) Illuminates green COMP light to indicate operation of the computer.
	RNDZ (Rendezvous RE-ENT - (Reentry) B. START - (Computer

12

. _ .

PANEL LOCATION SECTION I PAGE	NAME AND POSITION	FUNCTION
	COMP - (Computer Green Light)	Illuminated green light indicates that the computer is running, except for short periods in the Rendezvous mode when the light goes off to indicate that the platform should be fine-aligned and illuminates again to indicate that the platform alignment time is over.
•	C. RESET Sw (Computer Malfunction Switch)	Release after depression of the malfunction RESET Switch will turn the MALF Light off but does not affect or interrupt the computer program nor correct a mistake or error. Resets the low voltage sensitivity going to the Aux Computer Power Unit (ACPU).
	D. MALF - (Computer Amber Light)	<pre>Illuminating of amber light indicates that: (a) A malfunction has occurred during the running of the program. (b) It was turned on by computer diagnostic program. (c) A timing error occurred. (d) Program looping occurred. (e) The computer was turned off by Auxiliary Computer Power Unit (ACPU).</pre>

MSC Form 992A (Rev Jul 64)

PANEL LOCATION SECTION I PAGE	NAME AND POSITION	FUNCTION
	E. Computer Power Sw	
	on -	 (a) Applies power to the computer and enables it to operate in the selected mode (1¹/₂ sec). (b) Dependence of the two selected mode (1¹/₂ sec).
		(b) Powers the IVI's.(c) Enables the MDU PWR Switch.
	OFF -	(a) Normal controlled shutdown.
Right Astro Panel	<u>Manual Data</u> <u>Readout Unit</u> (MDU)	The MDU contains a two digit address display and a five digit message display.
		 (a) The two digit address window displays address Supplied from insertion unit (MDU). (See notes 2.5.7)
		(b) The five digit message window displays quanti- ties either entered thru the MDU or read from the computer.
	PWR Switch ON -	Power from the computer to MDU.
	OFF -	Disables MDU.
		ight Crew Support Division Prepared by acecraft Operations Branch Approved by

1.20

PANEL LOCATION SECTION I PAGE	NAME AND POSITION	FUNCTION	
	READ OUT -	If a valid two digit address is inserted, depression and release of the read out will cause display of values in the five digit message window. Subsequent read outs of same address may be made by simply depressing READ OUT.	
	CLEAR -	Depress and release of the CLEAR button releases all latches for the numbers displayed, but does not affect the visual display.	
	ENTER -	Depress and release the button to insert the five digit message from the MDU into the memory of the computer to the address specified in the address window.	
Right Astro Panel	Manual Data Insertion Unit (MDU)	The manual keyboard is used to enter the necessary numbers into the MDU for either entering informa- tion into the computer or reading out information from the computer. Insertion of a two digit address for readout or a two digit address and a five digit message for insertion.	
MINI OPERA	TIONS HANDBOOK	Flight Crew Support Division Spacecraft Operations Branch Approved by	

COMPUTER PROGRAM NOTES

MATH FLOW # 6- S/C 7

PRE LN

The prelaunch computer program enables the AGE equipment to verify the memory thru the spacecraft umbilical. Each computer program can be checked out along with the computer malfunction light. If PRE LN is selected in orbit, a diagnostic check including all T/M values for prelauhch and 117 computer multiplex words can be recorded. Since only six of the 117 words are read out every 2.4 seconds, 48 seconds (20 frames) are required to read all 117 words. The memory may be loaded only via DCS or MDU.

ASCENT

The ascent computer program is the onboard secondary guidance during ascent and can provide all of the steering commands to the GLV during the launch phase. The program will provide the crew with the information to correct the insertion velocity conditions with the onboard OAMS translation system. The onboard secondary guidance may be automatically selected by the GLV or manually initiated by selecting IGS on the guidance switch. Primary guidance (RGS) may be reselected if desired. If onboard guidance is activated, there is a fade-in logic that will minimize the forces on the GLV in the event a difference exists between secondary guidance (IGS) and primary guidance (RGS). The max attitude error that can be displayed is 6° regardless of HI or LO range selection.

Approved by	Flight Crew Support Division Spacecraft Operations Branch Date 10-29-65	GEMINI OPERATIONS HANDBOOK S/C 7 Rev Orig Section 2.5.7 Pg 1
MSC Form 10978 (Dec 63)	NA SA .	- Manned Spacecraft Center

STAGE I - Lift-Off

The spacecraft platform is aligned and in the FREE position during lift-off and ascent. When the GLV is 1.5 inches off of the launch pad, the Event Timer, the Time Reference System, and the Computer will be started by activation of a liftoff relay that is powered by the APS and IPS busses of the GLV. The Elapsed Time (T_{p}) is started when the spacecraft is 1.5 inches off of the launch pad. All ascent guidance is based on T_E. The count UP on the Event Timer, if manually initiated, is a backup start for the TRS and Computer at lift-off.

ROLL PROGRAM

The roll program commands a constant roll rate of $\pm 1.25^{\circ}/\text{sec}$. The start time is a variable with the termination time fixed at 20.48 seconds. The earliest start time (T_p) for roll program initiation is 4.48 seconds and varies as T = (20.48)- $\Delta OR/1.25$) Where ΔOR is the roll required to align the pitch of the GLV with the orbital plane. Positive roll is clockwise looking from the rear of the GLV toward the front. Nominal roll duration for S/C7 is variable due to a variable launch azimuth. PITCH PROGRAM

A three-step pitch program is provided with pitch rates designed to approximate a gravity turn profile in order to minimize the angle of attack and normal forces on the GLV. The following are the start times and the pitch rates for the threestep pitch program:

Step No.	Initiation Time	Pitch Rate
1	23.04 seconds	-0.609 [°] /second*
2	87.414 seconds*	-0.516 [°] /second*
3	118.134 seconds*	-0.260 [°] /second*

* May be updated via DCS.

FIRST STAGE UPDATES

Two out-of-plane velocity components (azimuth updates) will be received. The first update will be at 105 seconds and the second will be at 145 seconds. The onboard computer can accept four updates. However, the SC-7 computer will only receive two updates due to Burrough's ground computer limitations. These updates are to correct the platform alignment to within the 3σ limit (45 arc - minutes = 3σ).

STAGE II

INITIATION

The Stage II guidance initiation time for S/C-7 will be loaded via the DCS into computer address 13 and will be 166.072 sec. after lift-off. The approximate location of the spacecraft will be at an altitude of 250,000 feet, a velocity of 9,800 ft/second. a pitch attitude of 20 degrees, and a down range distance of 20 N.M.

GEMINI OPERATIONS HANDBOOK	Flight Crew Support Division	Prepared by	\equiv
S/C 7 Rev Arig	Spacecraft Operations Branch	Checked by	
Pg 2 Section 2.5.7	Date 10-29-65	Approved by	
MSC Form 1097A (Dec 63)		NASA - Manned Spacecraft Cer	+

STEERING

The Stage II guidance equations determine the attitude commands required to achieve the desired insertion conditions based on computed navigational data. The computed change in velocity error during each computation cycle is used to derive a time-to-go to Second Stage Engine Cutoff (SSECO). Spacecraft will not receive Second Stage updates from the ground.

YAW STEERING

The implicit steering scheme, in which only the out-of-plane velocity is nulled at SSECO, will be used. The onboard computer also provides the capability of explicit yaw steering, in which both the out-of-plane position and velocity are driven to zero at SSECO. Yaw steering will not be used on Gemini VII.

SECO COUNTDOWN

When the time-to-go to Second Stage Engine Cutoff (SSECO) becomes less than 2.3 seconds, the computer enters a fast loop sequence to insure engine cutoff as precise as possible and to command a zero attitude error signal to the GLV autompilot. The SSECO Discrete Input (DI) is transmitted when the time-to-go to SSECO is less than 0.475 seconds which is a time bias to compensate for the thrust tailoff. At this time, the astronauts will be on their right side with their heads toward the south pole.

SECO + 3.5 SECONDS

At SECO + 3.5 seconds, the IVI's are enabled and will go thru a zeroing process. When the IVI's are zeroed or at 23 seconds, whichever occurs first, the zeroing loop is disabled and the ΔV values will count up.

SECO + 30 SECONDS

At SECO + 30 seconds, the SEP SPCFT telelight will be depressed. Nominal ΔV will then be added by firing the aft firing maneuver thrusters.

IVAR

The Insertion velocity Adjust Routine (IVAR) is automatically entered following a GLV shutdown after ≈ 300 seconds from lift-off. IVAR provides the velocity commands required to obtain a specified orbit. A velocity command is displayed at SEC0 + 3.5 seconds if zeroing is complete. If zeroing is not complete at SEC0 + 3.5 seconds, the IVAR commands are displayed when zeroing is complete or SEC0 + 23 seconds, whichever occurs first. Out-of-plane velocity errors are included in the displayed velocity command. An additional velocity correction at apogee to correct perigee and a time from lift-off to apogee is calculated and available via the MDU. (The apogee correction is made utilizing the Catchup computer mode.) IVAR will calculate the corrections for either an underspeed or an overspeed condition at booster cutoff. (The IVAR corrections will not be used unless there is no ground solution from GE-Burroughs.)

Prepared by ABCensor	Flight Crew Support Division	GEMINI OPERATIONS HANDBOOK
Checked by	Spacecraft Operations Branch	S/C 7 Rev Orig
Approved by	Date <u>10/29/65</u>	Section 2.5.7 Pg 3
MSC Form 1097B (Dec 63)	NASA -	Manned Spacecraft Center

3258-63

INSERTION IVAR COMPUTATIONS

IVAR uses the Catch-Up mode logic with the computer mode switch in ASC and takes into consideration the in-plane velocity commands (V_{ga}) and the out-of-plane velocity commands ($\Delta \dot{z}$) to make the insertion velocity corrections. V_{ga} is calculated from the radial velocity error (flight path angle error) the^{ga} total vehicle velocity error at insertion and the error in radial distance from the earth center. The $\Delta \dot{z}$ error is calculated from the three computed platform velocity components. The out-of-plane command ($\Delta \dot{z}$) is not limited in Math Flow 6 and can be read out of address 60. Address 61 will display radial velocity and Address 72 will display total inertial velocity. NOTE: The $\Delta \dot{z}$ will limit but not necessarily correct the out-of-plane position errors.

IVAR IVI DISPLAY

The in-plane and out-of-plane velocity commands are displayed in body coordinates. As the spacecraft attitude changes, the computer will maintain the correct ΔV display with respect to instantaneous spacecraft attitudes thru a closed loop with the platform gimbals and accelerometer.

Due to the approximations made in the IVAR equations, the intitial ΔV 's displayed on the IVI's are not necessarily the ΔV 's that must be applied to the spacecraft to drive the IVI's to zero.

IVAR FDI DISPLAY

The Flight Director Indicators (FDI's) provide pointing commands for alignment of the spacecraft to apply the IVAR velocity corrections. The roll during IVAR will always indicate "zero" roll. The pitch needle will be displaced such that nulling it will align the spacecraft for the in-plane velocity correction. The yaw needle will be displaced such that nulling it will align the spacecraft for the out-of-plane correction. The out-of-plane command is not limited in Math Flow 6.

UNDERSPEED INSERTION

For an underspeed insertion, the FDI's will be in a "Fly-To" polarity in the SEF "Heads-Up" position. The procedure for correcting the underspeed insertion is to null the FDI's and fire the aft-firing maneuver thrusters until 0 ft/second is indicated. If the IVI's go thru "zero," the pitch FDI will peg at the top or bottom limit; also, the FWD light will go out and the AFT light will illuminate.

GEMINT OPERATIONS HANDBOO	K Flight Crew Support Division	Prepared by	
S/C 7 Rev Orig	Spacecraft Operations Branch	Checked by	
Pg 4 Section 2.5.7	Date 10-29-65	Approved by	
MSC Form 10974 (Dec 63)		NASA - Manned Spacecraft C.	antor

MSC Form 1097A (Dec 63)

NASA - Manned Spacecraft Center 3258-63

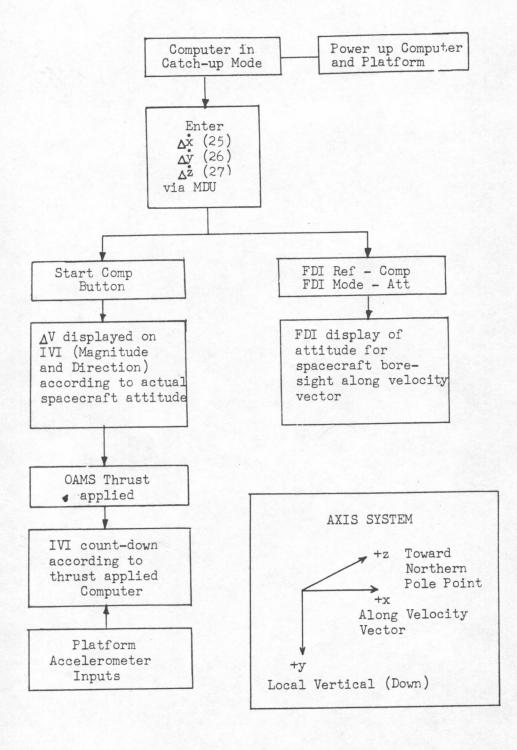
OVERSPEED INSERTION

When an overspeed exists, the pitch FDI will peg at the top or bottom limit indicating that a pitch up or a pitch down 180° maneuver should be performed. The computer will use a "shortest way to 180° logic" to reach the EEF heads down position. This FDI pitch logic depends on which side of the 0° pitch the spacecraft is orientated. The procedure to be used will be the 180° pitch up attitude maneuver. When at the 90° pitch up position, the aft firing thrusters should be fired for 5 seconds to give S/C-GLV separation. When the 180° pitch over maneuver is complete, the S/C will be "EEF" and in the "Heads Down" position. The FDI's will be in a "Fly To" polarity. The aft firing maneuver thrusters should be fired until 0 feet/second condition is reached.

IVAR APOGEE CORRECTION

From SECO until switching out of ASCENT mode the horizontal in-plane velocity to be gained at apogee to correct perigee (V, computer address 52) and the velocity to be gained at perigee to correct apogee (V, computer address 97) are computed. V and V should be read out of the MDU as soon as insertion thrusting is complete. The time from lift-off to apogee (T, address 73) is computed only from SECO to SECO + 20 seconds and only the final computed value can be read out. V and V are continuously computed taking into consideration central angle travel and thrusting. T, V, and V remain in storage after switching out of Ascent mode and may be read out in other modes when the computer is on.

AFTER IVAR THRUSTING


Read out V (computer address 52) and T (computer address 73) and record these values. Select PRE LN so that the insertion conditions can be read on T/M.

Prepared by	Flight Crew Support Division	GEMINI OPERATIONS HANDBOOK
Checked by	Spacecraft Operations Branch	S/C _7 Rev Orig
Approved by	Date 10-29-65	Section _2.5.7 Pg _5
10075 /5 /3\	NACA	Manual Cassage ft Caster

MSC Form 1097B (Dec 63)

CATCH-UP MODE

LOGIC FLOW

Pg_6_ Section _2.5.7	Flight Crew Support Division Spacecraft Operations Branch Date 10-29-65	Prepared by Checked by Approved by
MSC Form 10974 (Dec 63)		NASA - Manned Spacecraft Center

C Form 109 A (Dec 63)

NASA - Manned Spacecraft Center

1

i

COMPUTER PROGRAM NOTES

MATH FLOW NO. 6 - S/C 7

CATCH-UP

The CTCH-UP computer mode is used in conjunction with an aligned platform in ORB-RATE or FREE to apply a controlled velocity with the spacecraft OAMS translation system. Astronaut or ground computations must be done to supply the spacecraft computer with velocity components (pointing commands), and the time to initiate thrusting. CATCH UP Velocity Components can be loaded in any computer mode. See CATCH-UP Logic Flow for definition of coordinate systems.

LOADING THE MEMORY

The three velocity vectors $(\Delta \dot{x}, \Delta \dot{y}, \Delta \dot{z})$ can be loaded into the computer via the DCS or MDU in platform coordinates. The velocity vectors are loaded into addresses 25, 26, and 27 of the computer memory.

Example:

				Address:Message
Δ [*]	=	+50	feet/second	25:0050.0
Δţ		+40	feet/second	26:0040.0
٨ż	=	+30	feet/second	27:0030.0

Negative values may be loaded by using a 9 in the first digit of the Message.

FDI DISPLAYS

When the $\Delta \dot{x}$, $\Delta \dot{y}$, and $\Delta \dot{z}$ values are inserted into the computer, the pitch and yaw FDI will displace to a position such that when they are nulled, the FWD-AFT axis of the spacecraft will be aligned along the resultant velocity vector. The roll FDI is always slaved to the platform roll gimbal; however, the phasing is controlled to maintain a "fly-to" phasing.

trolled to maintain a "fly-to" phasing. As $\pm 90^{\circ}$ yaw is approached, the pitch and roll FDI's become hyper sensitive. Yaw attitudes close to $\pm 90^{\circ}$ must be flown using the "8 ball" or the IVI's as a reference.

The "8 ball" readings at the FDI null position can be calculated from the velocity by using a yaw, then a pitch Euler angle calculation sequence. The yaw angle is measured in the xz (yaw) plane from the x axis. The "8 ball" pitch angle is measured in a plane perpendicular to the yaw plane from the $\Delta \dot{x}$, $\Delta \dot{z}$ resultant to the resultant of the $\Delta \dot{x}$, $\Delta \dot{z}$ and $\Delta \dot{y}$ velocity vectors.

Prepared by Checked by Approved by		Section _2.5.7 Pg
MSC Form 10978 (Dec 63)	NA SA -	- Manned Spacecraft Center

The computer also calculates the pointing angles and they can be read out of the MDU from addresses 56 (yaw) and 57 (pitch). These computer angles are calculated in a different manner than the "8 ball" angles; therefore, they are slightly different. The computer calculates the angles in a pitch, then a yaw Euler angle calculation sequence. The computer pitch angle is measured in the xy (pitch) plane from the x axis. The computer yaw angle is measured from the $\Delta \dot{x}$, $\Delta \dot{y}$ resultant to the resultant of the $\Delta \dot{x}$, $\Delta \dot{y}$ and $\Delta \dot{z}$ velocity vector.

IVI DISPLAY

If the S/C is aligned to the platform and if $\Delta \dot{\mathbf{x}}$, $\Delta \dot{\mathbf{y}}$ and $\Delta \dot{\mathbf{z}}$ values are inserted into the computer, and theSTART computer button is depressed, the velocity values will be displayed in the FWD-AFT IVI windows. The $\Delta \dot{\mathbf{y}}$ (address 26) will be displayed in the UP-DN IVI windows. The $\Delta \dot{\mathbf{z}}$ (address 27) will be displayed in the L-R IVI windows. As the spacecraft attitude changes, the computer will maintain the correct ΔV display with respect to instantaneous spacecraft attitude thru a closed loop with the platform gimbals. An attitude change will resolve the ΔV components along the 3 vectors of the spacecraft (body coordinates). The ΔV 's displayed on the IVI's are also closed loop with respect to spacecraft translation maneuvers thru the platform accelerometer. When the spacecraft is maneuvered in attitude to null the pitch and yaw FDI's, the single velocity resultant will be displayed in the FWD-AFT IVI windows. For each set of IVI windows, there are small green lights indicating the direction in which a spacecraft translation maneuver would be required to drive the IVI's to "zero" if the S/C attitude were to remain constant.

MINI OPERATIONS HANDBOOK Flight Crew Support Division Prepared by Management C 7 Rev Orig. Spacecraft Operations Branch Checked by Checked by g 8 Section 2.5.7 Date 10-29-65 Approved by OBC	

REENTRY

The reentry computer program provides the capability to fly an automatic reentry or to fly a manual reentry by nulling the Roll FDI from 400,000 feet to 80,000 feet altitude.

UPDATES

The reentry computer program can receive DCS updates when the computer is on in any mode up to T_R -120 seconds. After T_R -120 manual updates may be made using the MDIU. The initial conditions of RE-ENT consists of a set of earth centered position coordinates and a velocity fix with respect to T_p = 0.

INITIATION

The RE-ENT computer mode can be started by a $T_R = 0$ discrete input (DI) from the Time Reference System (TRS), from the COMP button on the pedestal, or from the MAN FIRE RETRO Telelight Switch. With the COMPUTER mode switch in RE-ENT, the computer will accept and store 10 sec of acceleration data from the platform accelerometers prior to initiation of the RE-ENT mode ($T_R = 0$). If the retro rockets are fired at a time other than $T_R = 0$, the touchdown point will be shifted proportionately.

$T_{\rm p} = 0$ to 400,000 feet

At $T_R = 0$ the first retro rocket will fire. The last retro rocket thrust will end at $T_R + 22$ seconds which includes tailoff time. At $T_R = 0$ the COMP light will illuminate green and the computer will accept acceleration data from the platform accelerometers for 60 seconds. During retrofire and until the 60-sec time period is over, the computer will integrate the acceleration data and display the ΔV from retrofire on the IVI's in body coordinates that are not closed loop with S/C attitudes. $T_R + 45$ seconds and in retroattitude, the JETT RETRO Telelight will illuminate amber. When depressed, the retro rockets are jettisoned; the BEF bias ("fly to" the FDI's in BEF attitude) is removed; the roll FDI's are locked in the MIX mode regardless of flight director mode switch selection; and the telelight is illuminated green. At $T_R + 60$ seconds, the computer starts calculating the distance from the S/C to the center of the earth. The HI RANGE for FDI scale deflection should be selected. As long as COMP MODE and ATT REF are selected, the FDI will reference zero regardless of S/C attitude.

400,000 feet to 1.0 ft/sec²

When a value is calulated indicating that the S/C is at an altitude equal to 400,000 feet above the earth, the computer will start sending pointing commands to the roll FDI. When the roll FDI is nulled, and the proper "fly to" the FDI phasing is obtained, the crientation of the S/C will be at the desired bank angle in the BEF heads down position. This attitude will be held until a reverse bank angle command is received from the computer. When the computer receives a 1.0 ft/sec acceleration from the platform accelerometers, a down range error will be displayed and a cross range signal that is the cross range error divided by cross range capability. The altitude above earth will be 280,000 to 320,000 ft.

Prepared by	Flight Crew Support Division	GEMINI OPERATIONS HANDBOOK
Checked by	Spacecraft Operations Branch	S/C 7 Rev Orig
Approved by	Date 10-29-65	Section 2.5.7 Pg 9
10000 /0 /01	NACA	Named Concernet Contor

MSC Form 1097B (Dec 63)

NASA - Manned Spacecraft Center

1.0 ft/sec² to 80.000 feet

When the 1.0 ft/sec² acceleration is sensed, the down range error and the cross range error divided by the cross range capability are displayed on the pitch and yaw FDI's. At a time after flying a constant bank angle, when the cross range error is equal to the cross range capability, a reverse bank angle will occur and the spacecraft is rolled thru the heads down position to the Reverse Bank Angle desired. At 80K feet the spacecraft will be heading straight to the toughdown point.

The down range and cross range errors will be displayed on the pitch and yaw FDI's. To calculate these errors, the distance down range to the touchdown point is compared with the distance to the touchdown point that would be obtained if zerolift (rolling reentry) were used.

Full scale deflection from center on the pitch FDI (down range) is ± 200 N.M. (HI scale) and ± 100 N.M. (LO scale). The cross range displayed is the cross range error divided by the cross range capability remaining. Coriolis effect is included in the calculations.

When the computation (of the distance to the center of the earth) indicates that the S/C is 80,000 feet above the earth surface, the roll gimbal is check and a signal that is opposite to the roll gimbal angle is commanded, thereby setting any bank signal or roll rate equal to zero. The pitch and yaw FDI's are commanded to zero.

The S/C is now in the proper attitude for drogue deployment.

EMINI OPERATIONS HANDBOOK	Flight Crew Support Division	Prepared by
3/C 7 Rev Orig	Spacecraft Operations Branch	Checked by
2g 10 Section 2.5.7	Date 10-29-65	Approved by
MSC Form 1097A (Dec 63)		NASA - Manned Spacecraft Center

COMPUTER PROGRAM NOTES MATH FLOW NO. 6 (S/C 6 & 7) <u>RENDEZVOUS</u> (Not usea S/C 7)

1. When RNDZ is selected, after RDR lock-on is established, the computer will go through an initialization cycle and pick up the $W_T t_{PR}$ (130° for GT-6) and the angular distance between vernier corrections ($\Delta = 48^{\circ}$ for GT-6).

2. The computer will zero the IVI's and then start cycles to check the RDR until the RDR ready discreate is up. At this time the computer will read the range to the target and the sine of the azimuth and elevation angles of the target with respect to the spacecraft. The computer checks to second that the data is within reliable operating ranges of the RDR. If the data is out of range, it is discarded, and if it is in range, a second set of data is taken and compared to the first range. If the two ranges are within a specific tolerance, the first set of data is accepted. The computer uses this accepted data and the gimbal angle information to compute the position of the spacecraft in target centered navigational coordinates (X, Y & Z) and stores this coordinate data. This process will continue at 100 second intervals until 700 seconds after the first valid RDR sample.

3. If during the RDR interrogation an invalid data point is received, the COMP will interrogate the RDR four times a second until a valid point is received or until 100 seconds have passed. If late data is reveived, it is time tagged with the actual late time and stored. If no valid data is received, then a missed point indicator is stored.

4. 700 seconds after the first valid data point (provided that the last data point is not a missed point), a sequence of calculations is begun using the Clohessy-Wiltshire equations. The data storage table contains 11 spaces for data stowage and the latest data point is always stored in position 11, and earlier data points shifted down toward 1 by one storage space, with any data bit in the first data stowage space being shifted out. At the end of 700 seconds, 8 data points will have been taken and spaces 1, 2 & 3 will have missed data point indicators stored in them. The data point stored in number 11 is compared with the data in 1 through 7. Points 1, 2 & 3 are invalid, therefore, only 4, 5, 6 & 7 are used.

5. The $\Delta V_{\rm T}$ is displayed on the $\Delta V_{\rm X}$ of the IVI for 50 seconds. After that the IVIs are zeroed and remain zero for 50 seconds. During this 100 second interval, the astronauts must determine whether to push start COMP and initiate the closed-loop Rendezvous or wait for another $\Delta V_{\rm T}$. When a $\Delta V_{\rm T}$ has been selected and the start COMP depressed, the midpoint of the first thrust (T_M) is set at 250 seconds after the last radar point was taken. The ΔV for the initial thrust is calculated, the angles to align the Spacecraft for that thrust are displayed on the FDIs and the IVIs will count up. When the start COMP light comes on, thrust should be initiated.

GEMINI OPERATIONS	HANDBOOK	Flight Crew Support Division	Prepared by
S/C 7 Rev	Orig	Spacecraft Operations Branch	Checked by
Pg 11 Section	2.5.7	Date <u>10-29-65</u>	Approved by
MSC Form 1097A (De	ec 63)		NASA - Manned Spacecraft Center

COMPUTER

NOTES

6. 150 seconds after the midpoint of thrust $(T_{M} + 150)$, the Spacecraft attitude is computed so that at $(T_{M} + 200 \text{ sec.})$ the Spacecraft can be aligned on the target. At $(T_{M} + 200 \text{ sec.})$, the computer starts taking radar samples at 20 second (not 100 sec.) intervals for 120 seconds (7 samples). $(T_{M} + 200 \text{ sec.}) + (120 \text{ sec.}) = T_{M} + 320 \text{ sec.}$ At $T_{M} + 320 \text{ seconds}$, all FDIs are commanded to zero for platform alignment.

7. 80 seconds prior to the first verier correction, the platform alignment is terminated by an indication from the FDIs to re-align on the target. At the end of the 80 seconds for spacecraft-target alignment, one radar data point is taken. This one radar data point, plus the seven data points taken prior to the platform alignment, are used to compute a vernier ΔV . As soon as the ΔV appears on the IVIs, thrusting should begin (line-of-sight).

8. The procedure in the previous paragraph is repeated as many times as necessary.

9. Out-of-plane corrections will be made on the first thrust and on any vernier correction of 90° or less from rendezvous.

10. 150 seconds after the last vernier correction, the start COMP light goes out indicating that the closed-loop rendezvous is complete. At this time, if there is less than 30° orbital travel to rendezvous, the computer will interrogate the radar each 1/8 second and the radar range can be read out or the catchup mode can be selected as it interrogates the radar each 1/8 second.

GEMINI OPERATIONS HAM S/C 7 Rev Or Pg <u>lla</u> Section 2	NDBOOK Flight Crew Support D rig Spacecraft Operations 2.5.7 Date 10-29-65	Branch Prepared by <u>AllBBannen</u> branch Checked by
MSC Form 1097A (Dec 6	2)	NACA Hannad Canada St. C.

MSC Form 109/A (Dec 63)

NASA - Manned Spacecraft Center

1258-13

COMPUTER MDU

NOTES

The Manual Data Unit (MDU) consists of the Manual Data Keyboard and the Manual Data Readout units. The Manual Data Keyboard has ten push buttons for insertion of addresses and data, while the Manual Data Readout has three push buttons for control of manual data functions.

<u>Readout</u> - Insert the two-digit address, the first digit going into the left address window and the second going into the right address window. Depress Readout and any computer function that is going on will stop and the data at the selected address will be displayed in 3.7 seconds. Then the computer will continue on as normal. Holding down the Readout will cause display of updated information, each 3.7 seconds.

<u>Insertion</u> - A two-digit address and a five-digit message must be displayed. If negative data is to be inserted, the number nine key is depressed as the first message digit. This means that the largest positive number that can be inserted by the MDU is 89,999 and the largest negative number that can be inserted is -9,999.

Depress the Enter button and the data in the message windows is entered into the computer memory at the designated address. Each digit of the address and the message is verified by a slight ripple of the display wheels. If a number other than the ones displayed was entered, the ripple will turn the display wheel to the number that was entered. This can happen if the number keys are not held down for approximately 0.5 seconds each.

GEMINI OPERATI S/C 7 Pg 12 Sect:	NS HANDBOOK Rev Orig Ion 2.5.1	Flight Crew Support Division Spacecraft Operations Branch Date: 10-29=65	Prepared by <u>R. B.</u> Checked by Approved by <u>(757</u>)	_
MSC Form 1097	(Dec 62)		NASA - Manned Spacecraft Center	-

COMPUTER

5

NOTES

IVI's

The <u>Incremental Velocity Indicators display the ΔV values from 000 to ±999 ft/sec</u> in any one or all three axes. A value of 0.5 is added to each velocity value to be displayed and the value is rounded to the lower whole number. When a thrust is made while the computer is in Ascent, Catch-up, Rendezvous, or Reentry, the computer will resolve the acceleration data from the platform through the matrices in the computer and drive the ΔV values to these proper settings on the IVI. The ΔV values are displayed with reference to body coordinates of the spacecraft.

Whenever the ΔV values are inserted from the platform through the computer or from the MDU or DCS through the computer, they are closed loop with the spacecraft attitude. Any acceleration change will be sensed and changed to body coordinates and displayed accordingly on the IVI's. The spacecraft can be maneuvered such that all of the ΔV value will be displayed in one axis only.

Insertion of ΔV by the manual insertion knobs are not closed loop because they are not resolved through the computer matrices. The computer automatically zeros the ΔV indicators when turned on and upon changing from one computer mode to another computer mode.

The IVI's provide a display of the required or actual velocity change in each of the three spacecraft axes, as determined by the particular computer mode of operation.

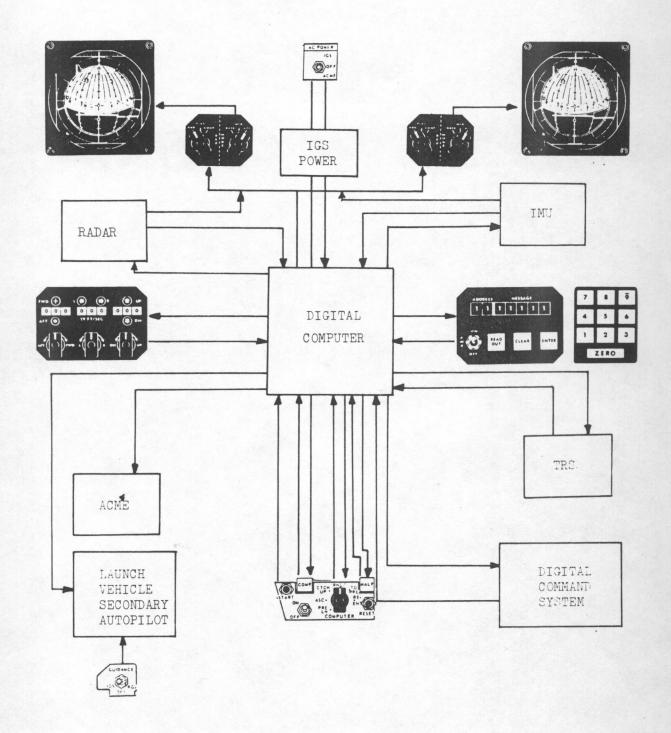
- a. <u>Ascent</u> Display and countdown of insertion velocity correction calculated by the computer. This occurs at SSEC0 + 20 seconds.
- b. <u>Catch-up</u> Display and countdown catch-up velocity maneuvering which will be inserted via the Digital Command System, the MDU, or set in manually.
- c. <u>Rendezvous</u> Accept radar data, calculate and display ΔV and pointing commands required for rendezvous.
- d. <u>Reentry</u> The display will show the change in velocity, relative to the body reference axes, caused by the firing of retro rockets.

Prepared by	Flight Crew Support Division	GEMINI OPERATIONS HANDBOOK
Checked by	Spacecraft Operations Branch	S/C 7 Rev Orig.
Approved by	Date 10-29-65	Section 2.5.7 Pg
MSC Form 10978 (Dec 63)	NASA -	Manned Spacecraft Center

COMPUTER

NOTES

The Auxiliary Computer Power Unit provides power to the computer during periods of varying bus voltage. The Auxiliary Power Unit will supply power for 100 M.S. and, if proper voltage is not restored, will then shut the computer down in a controlled sequence so that no memory data will be erased.


EXTENDED ADDRESS CAPABILITY

The DCS extended address capability is accomplished by sequential use of two DCS addresses (computer addresses 20 and 21) such that the data and an auxilliary address are shared within the two word transmission. The extended address technique is required for any DCS decimal address (computer address) greater than 63. The extended DCS capability permits a greater number of DCS loadable constants as well as providing a 26 bit data word update which eliminates some errors resulting from the DCS 16 bit words.

	EXAMPLE	
18 of the most significan	t bits	Address 20 6 bits
24 7		_61
8 least significant bits 24 - 7	Auxilliary Address	Address 21 6 1

GEMINI OPERATIONS HANDBOOK S/C 7 Rev Orig Pg 14 Section 2.2.7	Flight Crew Support Division Spacecraft Operations Branch Date 10-29-65	Prepared by R. B. B. Checked by Approved by U
MSC Form 1097A (Dec 63)		NASA - Manned Spacecraft Center

COMPUTER BLOCK DIAGRAM

Prepared by Checked by	Flight Crew Support Division Spacecraft Operations Branch Date 10-27-65	GEMINI OPERATIONS HANDBOOK S/C 7 Rev Orig- Section 2.5.7 Pg 15
MSC Form 10978 (Dec 63)	NASA -	Manned Spacecraft Center

COMPUTER

124

NOTES

ADDRESS	 (a) The two digits to be inserted if a readout is desired.
	(b) The first two digits of seven to be inserted if data is to be entered into the computer memory.
QUANTITY	Nomenclature of the addressed memory units.
MODE	Position of computer mode selection switch for the corresponding address.
USED BY DCS	Address and data can be inserted through the DCS system from the ground.
MDU INSERT	The dimensions and units that can be inserted into the computer for each address.
MDU DI SPLAY	The dimensions and units that can be displayed by the computer for each address.
RANGE	The maximum and minimum nominal amount that can be inserted into or read out of the computer for each address.

GEMINI OPERATIONS HANDROOK	Flight Crew Support Division	Prepared by A. B.
S/C 7 Rev Orig.	Spacecraft Operations Branch	Checked by
Pg 16 Section 2.5.7	Date 10-29-65	Approved by
MSC, Form 1097A (Dec 63)		NASA - Manned Spacecraft Center

ALL COMPUTER MODES

PARAMETER	ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS
Clear display	00				No	All zeros displayed when error in procedure
rime to reset (T _X) DCS Relays	Ol	Min:Sec		0-900 Sec	Yes	Transfers between Computer and TRS occur with the Least Signif cant Bit (LSB) equal to 1/8sec Max time is 2 hrs 16 min 32 sec
High Order DCS data	20				Yes	
Extended DCS address and Low Order DCS da					Yes	
Time to go to Retrofire T _R	02	XXX.XX	XXX.XX		Yes	There is a 3.7 sec time delay between READ OUT and the actual display.

1

1

PRE-LAUNCH COMPUTER MODE

PARAMETER	ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS
Final velocity (V_F^*)	22		x.xxxx	1 <u>+</u> .1	Yes	Nominal time value of $V_F^* =$.992035 to specify V_F in Cononical units
Pitch gimbal (K ₀) bias	35		XXX.XX Deg Min	0-360 ⁰	Yes	Desired decimal value - 8.0
Yaw gimbal (Ky) bias	36		XXX.XX Deg Min	0-360°	Yes	Desired decimal value = 0
Roll gimbal (Kø) bias	37		XXX.XX Deg Min	0-360 ⁰	Yes	Desired decimal value = 3.0
Misalignment & scale factor matrix	38- 46		<u>+</u> .xxxxx	.25	Yes	Matrix data for platform alignment (KX1, KX2, KX3, KY1, KY2, KY3, KZ1, KZ2, KZ3)
Accelerometer bias	47 - 49		+X.XXX pul/sec	3.6pul sec		Bias for each platform accelerometer (KX4, KY4, KZ4)

Prepared by	Alshamm	Flight Crew Support Division	GEMINI OPERATIONS HANDBOOK
Checked by		Spacecraft Operations Branch	S/C 7 Rev Orig
Approved by		Date 10/29/65	Section 2.5.7 Pg 17

MSC Form 1097B (Dec 63)

NASA - Manned Spacecraft Center

PARAMETER	ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS
Abort Lat (ϕ_{TA})	10	+XX.XX ^o	+xx.xx°	0+900	Yes	Touchdown point for compu-
Abort Long (θ_{TA})	11	xxx.xx°	xxx [•] .xx _o	0-360°	Yes	ter to navigate to during an abort situation during ASCENT
Separation Velocity (\$ V _F *)	12	No	+XXX.X ft/sec	<u>+</u> 50 ft/ sec	Yes	Nominal value = 10 FPS
Final Velocity (V_{F}^{*})	22		x.xxxx	1 <u>+</u> .1	Yes	Nominal value of V_F^* = .992035 to specify V_F in cononical units
Desired X (4X) velocity change	25	XXXX.X ft/sec	XXXX.X ft/sec	0- 999.9 ft/sec	Yes	
Desired Y (AÝ) velocity change	26	XXXX.X ft/sec	XXXX.X ft/sec	0- 999.9 ft/sec	Yes	Insertion Velocity Adjust Routine (IVAR) is from catch-up equations used in ASCENT to drive FDI's and IVI's for insertion correction
Desired Z (AŻ) velocity change	27	XXXX.X ft/sec	XXXX.X ft/se c	0- 999.9 ft/sec	Yes	
V along guid (V _{XG}) X-axis	28		XXXXX ft/sec	0- 26,000 ft/sec	Yes	
V along guid (V _{YG}) Y-axis	29	1 1	+XXXX ft/sec	<u>+4000</u> ft/sec	Yes	Backup guidance parameters updated at 105, & 145 sec during launch
V along guid (V _{ZG}) Z-axis	30		+XXXX ft/sec	+2000 ft/sec	Yes	
Update command (LC21)	31	~			Yes	Minus data word results in LC21 (-), LC21 (-) in ascen- update loop enabling use of address 28, 29, and 30
Azimuth of (४) Orbit Plane	32		<u>+</u> xx.xx ^o	+10°	Yes	Nominal $\gamma =0789318$ radians Difference between local S/C azimuth and insertion azimuth at time of platform release.
Sine of the (sin) platform angle betwee launch point & orbit plane	33 n		<u>+</u> .XXXX	<u>+</u> .01745	Yes	Nominal $\sin \int =0076103$. Sin $\int =$ angle between plat- form Y-axis and the normal to the orbit plane at platform release
GEMINI OPERATIONS HAN S/C 7 Rev 0 Pg 18 Section 2 MSC Form 1097A (Dec 6	rig Spa	ight Crev acecraft Date	Operation 0peration 10/29/	ns Branc	h Check Appro	A - Manned Spacecraft Center

NASA - Manned Spacecraft Center

-

-

PARAMETER	ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS
Desired roll $(\Delta \rho_{\rm R})$ maneuver	34		+XX.XX ⁰ deg	+25° deg	Yes	Nominal A =1391497 radians Roll program to place GLV in launch azimuth. Positive for clockwise roll looking from rear.
(LC 31)	50	Yes	±xxxx	0 to 1400 sec.	Yes	+ for MISSION SIMULATION (NOT USED DURING ASC) - for ACCEPTANCE TEST
▲ V applied at apogee to gain perigee(Vgp)	52		+XXXX ft/sec	+300 ft/sec	No	
S/C Y-axis with (C5) respect to East	55		X.XXXX ^O deg	+4° +6°	Yes	Nominal value of $C_5 = .0$ E 4794 radians. Positive C_5 for S/C Y-axis is north of east.
IVAR-out-of-plane ∆V (V⊥f)	60	No	+XXXX It/sec	+250 ft/sec	Yes	
Final Targeting Radial Velocity (V pf)	61	No	No	-1200 +1000 ft/sec	Yes	
Effective (g _{epf}) gravity at SSECO	62			+2 ft/sec ²	Yes	Nominal g _{epf} = -0.233 ft/sec
Total Inertial Velocity (V)	72	No	XXXX.X ft/sec		No	
Computed time (T _{AP}) from lift-off to apogee	73		XXXXX sec	0- 10,000 sec.	No	This value computed at SSECO but can not be read out until SSECO + 20. Consideration is not taken for the final 10 ft/sec OAMS insertion thrusting.
Time to stop (Ts)	90	XXXX.X sec	XXXX.X sec			
Start Command (LCS)	91	+XXXX	+XXXX			
Orb Radius Rate (Vp)	94	No	+XXXX ft/sec	-1200 +1000 ft/sec	No	
▲V applied at perigee to gain apogee (Vga)		No	+XXXX ft/sec	+400 ft/sec	No	$\langle \cdot \rangle$

Prepared by	Flight Crew Support Division Spacecraft Operations Branch	GEMINI OPERATIONS HANDBOOK
Approved by	Date 10/29/-65	Section <u>2.5.7</u> Pg <u>19</u>

MSC Form 1097B (Dec 63)

)

NASA - Manned Spacecraft Center

-14

PARAMETER	ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS
Apogee time purtur- bation constant (CT2)	101	No	No	+.0001 sec/ 3 (FFS)	Yes	0000255 sec/(ft sec) ³
Bias used for SSECO delivery (t_K)	102			0.4 to 1.0 sec	Yes	.38802 sec
Final value of (ΔR_F) insertion radius	103					Final value = 21438500 ft
Effective (C*) exhaust velocity	104			10,080 +100 ft/sec	Yes	Nominal C* = 10,092 FPS.
Time stage II (t _{STG}) guid initiate	105			160- 170 sec	Yes	166.072 sec
Time pitch (t _{P2}) step 2 initiate	106			50- 100 sec	Yes	Nominal value of t = 87.41 sec. Use in Conjunc- tion with address 109 to approximate a gravity turn profile during first stage of launch
Time pitch (t _{P3}) step 3 initiate	107			100- 125 sec	Yes	Nominal value of t _{P3} = 118.13 sec. Used in con- junction with address 110to approximate a gravity turn profile during first stage of launch
LV pitch rate, step 1 (C _{pl})	108			5 -1.0 ⁰ /se	Yes c	Nominal pitch rate = -012370844 radiums. Step 1 rate will be initiated at 23.04 sec.
LV pitch rate, step 2 (C _{p2})	109	**. <u>-</u>		0 7 ⁰ /sec	Yes	Nominal pitch rate = 493 /sec. Used in con- junction with address 106
LV pitch rate, step 3 (C _{p3})	110		š. g ₁ . j.	0 5 [°] /sec	Yes	Nominal pitch rate =.00410676 246 /sec. Used in con- junction with address 107
Final value of (V _{Pf}) radial velocity	112			<u>+</u> 2000 ft/sec	Yes	Nominal value of V _{Pf} = 0 ft/sec at shutdown.

GEMINI	OPERATIONS	HANDBOOK	Flight Crew Support Division Spacecraft Operations Branch Date <u>10/29/65</u>	Prepared by Mab
S/C	7 Rev	Orig	Spacecraft Operations Branch	Checked by
Pg _ 20	_ Section	2.5.7	Date 10/29/65	Approved by
	100-10			

MSC Form 1097A (Dec 63)

NASA - Manned Spacecraft Center

-

PARAME	ETER	ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS	
Insertion Purtibation	(VAE)	113	No	No	<u>+</u> .0006	Yes	KA5 =00048281 sec/ft	
Coefficients		114	No	No	<u>+</u> .001	Yes	$A7^* = -\frac{A7}{A6} = .00089765 \frac{ft/sec}{ft}$	
	(A9*)	115	No	No	<u>+</u> .0006	Yes	$A9^* = -\frac{1}{A6} =00029268 \frac{ft/sec}{It}$	
Apogee time p constant	(CT1)	tion 116	No	No	0 to -4	Yes	CT1 = 3.17 sec/ft/sec	
Average Pitch tude error	Atti-	117	No	No	<u>+</u> 2 deg.	Yes	$\triangle \Theta AV = 0$ rad.	
	AV		CATCH-UP	COMPUTE	R MODE			
PARAME	ETER	ADDRESS	MDU INSERT	MDU DISPLAY		UPDATE BY DCS	REMARKS	
Desired X vel change	(\$\$)	25	XXXX.X ft/sec	XXXX.X ft/sec	0- 999.9 ft/sec	Yes		
Desired Y vel change	(A Ÿ)	26	XXXX.X ft/sec		0- 999.9 ft/sec	Ťes	△V values that can be inserted thru the MDU or DCS to give pointing commands on the FDI's and closed loop velocities on the IVI's with respect to S/C attitude. Also used for IVAR in ASCENT.	
Desired Z	(AZ)	27	XXXX.X ft/sec	XXXX.X ft/sec	0- 999.9 ft/sec	Yes		
Command yaw	(4 _{bc})	56		XXXXX arc min	+10,800		Vector values from addresses 25, 26, & 27 resolved to body angular coordinates thru the computer matrices. Pitch computed first and resultant used to compute yaw.	
Command pitch	(θ_{bc})	57		XXXXX arc min	+10,800 -9999			
Yaw Error	(44) b)	58		+XXX.X DEG	0 <u>+</u> 180	No	Difference between actual attitude and commanded atti- tude (displayed on FDI's using Comp Ref) for thruster firing or platform alignment. Pitch computed first and resultant used to compute yaw	
Pitch error	(△ 0 _b)	59		XXXXX +XXX.X DEG	0 0 <u>+</u> 180	No .		
Radar Range	(R _R)	69		XXX.XX N.M.	0-250 N.M.	No	Readout of L-Band Radar Range measurement. Real time read out each time Readout Button is pushed, updated each 1/8 sec. If range is greater than 250 N.M., readout will be 00000.	

repared by	Flight Crew Support Division	GEMINI OPERATIONS HANDBOOK
Checked by	Spacecraft Operations Branch	S/C 7 Rev Orig
Approved by	Date 10/29/65	Section 2.5.7 Pa 21

MSC Form 1097B (Dec 63)

NASA - Manned Spacecraft Center

CATCH-UP COMPUTER MODE

PARAMETER		ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS
Desired Velocity Changes (ΔV_{XB})		80		+XXX.X ft/sec		No	Body coordinates that are closed loop with S/C
		81		+XXX.X ft/sec		No	attitude. A reference position must be used.
	(ΔV_{ZB}) 82 +XXX.X ft/sec		No				

RENDEZVOUS COMPUTER MODE

PARAMETER	ADDRESS	MDU INSERT	MDU DISPLAY	TO A BTOTT	UPDATE BY DCS	REMARKS	
Reciprocal of AFT Thruster Acc. 1/AT	24	X.XXXX sec ² /ft	X.XXXX sec ² /ft		*	*In any mode except rendz.	
Desired X (AX) vel change	25	XXXX.X ft/sec	XXXX.X ft/sec	0- 999.9 ft/sec	No	Δ V values that can be	
Desired Y (AY) vel change	26	XXXX.X ft/sec	XXXX.X ft/sec	0- 999.9 ft/sec	No	inserted thru the MDU only to give pointing commands on the FDI's and closed loop veloci-	
Desired Z (Δ Z)	27	xxxx.x	xxxx.x	0- 999.9 ft/sec	No	ties on the IVI's with respect to S/C attitude Also used for IVAR in ASCENT.	
Target orbit (T) period	53	XXXX.X sec	XXXX.X sec	5,200 to 6,400 sec	Yes	Nominal value (T) = 5403.625248 sec. d	
Target orbit (r _T) radius	54	XXXXX (lOOyds	XXXXX) (100yds) 26x10 ⁶ ft	Yes	Nominal value $(r_T) = 21,888,154$ feet. Measured from center of earth.	
Command yaw (4 bc)	56		XXXXX arc min	10,800 -9999		Values from addresses 25, 26, & 27 resolved to body coordinates thru th	
Command pitch ($\theta_{ m bc}$)	57		XXXXX arc min	10,800 -9999		computer matrices.	
GEMINI OPERATIONS HANDBOOK Flight Crew Support Division Prepared by 10 S/C 7 Rev Orig Spacecraft Operations Branch Checked by 10 Pg 22 Section 2.5.7 Date 10/29/65 Approved by 10						ed by	

MSC Form 1097A (Dec 63)

NASA - Manned Spacecraft Center

-

PARAMETER	ADDRESS	MDU INSERT	MDU DISPLAY	RANGE	UPDATE BY DCS	REMARKS	
Yaw error (Δ / b)	58		XXXXX arc min	10,800 -9999	No		
Pitch error $(\Delta \theta_{b})$	59		XXXXX arc min	10,800 -9999	No	Difference between actual attitudes & commanded atti- tudes (displayed on FDI's)	
Radar range (R _R)	69		XXX.XX N.M.	0-250 N.M.	No	Readout of L-Band Radar Range Updated with each 100 sec radar data point from start of rendz until the 30° Wt corrections. After 30° Wt range is updated each 1/8 sec. For ranges greater than 250 N.M., computer will read O N.M.	
Total vel incr (ΔV_T) for rendz	70		XXXX.X ft/sec	0- 999.9 ft/sec	No	The sum of the initially calculated vel correction and the calculated final closing vel $(\Delta V_T = \Delta V_1 + \Delta V_F)$ displayed automatically on Fwd-Aft IVI each 100 sec starting at end of the 700 sec data acquisition period. Does not include the velocity required at the ΔW_t (Address 93) corrections. Used for total fuel estimate for rendezvous.	
Initial impulse (ΔV_1) for intercept) 71		XXXX.X ft/sec	0- 999.9 ft/sec	No	Δ V that is calculated for firs thrust after a total Δ V has been selected.	
Desired velocity changes ($\Delta V_{\rm XB}$)	80	No	<u>+xxx.x</u>	+540 ft/sec	No	Body coordinates that are closed loop with S/C attitude A reference position must be	
	81	No	<u>+xxx.x</u>	+150 ft/sec	No	used.	
	82	No	<u>+xxx.x</u>	+150 ft/sec	No	These angles must be selected such that Wst JL < 18.17°	
Orbital angle to go to RNDZ (Wt ^t PR) Orbital angle betwee corrections	83 n 93	XXX.XX deg	XXX.XX deg		No	163.42 <wstdl 196.58°<br="" <="">342.71<wstdl other="" values<br="">will cause comp overflow.</wstdl></wstdl>	
Radar angle reject signed (RLO)	92	XXXXX	XXXXX		No	Accept 00000, Reject 99999	
Jadar Range Tolerand	e 111			1	Yes	*	
Approved by	19133	Fligh	t Crew Si craft Ope Date	ipport D erations 0/29/65	ivision Branch	GEMINI OPERATIONS HANDBOOK S/C 7 Rev Orig Section 2.5.7 Pg 23	

RENDEZVOUS COMPUTER MODE

REENTRY COMPUTER MODE

PARAMETER Time to go to (T_R) retrofire		ADDRESS	MDU INSERT	MDU DISPLÄY	RANGE	UPDATE BY DCS	RH.MARKS	
		02	Min Sec XXX XX	Min Sec XXX XX		Yes	There is a 3.7 sec. time delay between READ OUT and the actual display.	
Position coordinate ^s	$(X_{\rm ER+})$ $(X_{\rm ER-})$	03 63	XXXXX (100yds	XXXXX (100yds	+24x10 ft	Yes	Set of retro- fire position inertiall fixed orthogonal axis wit the origin at the center of the earth, Z _{ER} along	
	(Yer+) (^Y er-)	04 64	XXXXX (100yds	XXXXX (100yds	+24x10 ft	Yes		
	(Z _{ER+}) (^Z ER-)	05 65	XXXXX (100yds	XXXXX (100yds	+24x10 ⁶ ft	Yes	the north polar axis, and X _{ER} extending thru a celestial reference lying in the equatorial plane. If the value is negative the computer will change the address and display the correct address and value upon READ OUT.	
Velocity component s	$(\mathbf{X}_{\mathrm{ER}^+})$ $(\mathbf{X}_{\mathrm{ER}^-})$	06 66	XXXXX yds/sec	XXXXX yds/sec	+26x10 ³ ft/sec	Yes	Inertial velocity components of the retrofi position coordinates. If the value is negative, th computer will change the address and display the correct address and value upon READ OUT.	
	(Y_{ER+}) (Y_{ER-})	07 67	XXXXX yds/sec	XXXXX yds/sec	+26x10 ³ ft/sec	Yes		
	(Z _{ER+}) (Z _{ER-})	08 68	XXXX.X yds/sec	XXXX.X yds/sec	+26x10 ³ ft/sec	Yes		
Initial earth $(\Delta \theta_R)$ longitude of X_E axis		09	xxx.xx ^o deg	xxx.xx ^o deg	0-360 ⁰ deg	Yes	Angle from X_E axis to Greenwich Meridian at $T_R = 0$. Update from Goddard SFC is referenced to the first point of Aries.	
Target latitude (ØT)		10	+XX.XX ^O deg	+XX.XX deg	0+90 ⁰ deg	Yes	Can update via MDU until $T_R = 0$	
Target longitude (0T)		בנ (o XXX.XX deg	o XXX.XX deg	0-360 deg	Yes	Lat and long used during reentry or an ascent abort.	
Bank Angle Bias K _{BA}		23		+XX.XX ^o deg	0 <u>+</u> 15° deg	Yes	Nominal value = 00000	
Acceleration (K) threshold		100			0-15 ft/sec	Yes	Nominal value of K = 1.0 ft/sec	

GEMINI OPERATIONS HANDBOOKFlight Crew Support DivisionS/C7RevPg24Section2.5.7Date10/29/65 Prepared by ______ Approved by

MSC Form 1097A (Dec 63)

NASA - Manned Spacecraft Center

T/M OF COMPUTER MODES

NOTES

Prelaunch Mode $T/M (D/T)$			Velocity (X) Velocity (Y)	FPS FPS
1/11 (2/1)				FPS
1. Prelaunch selection	0 or +8V		Velocity (Z)	
2. Pitch gimbal	Rev		Pitch error	Rad
3. Yaw gimbal	Rev		Yaw error	Rạd
4. Roll gimbal	Rev		Roll error	Rad
5. Sum of X accel FX	FPS		Time in Mode	Sec
6. Sum of Y accel F-Y	FPS		Flow tag	TDC
7. Sum of Z accel $F-Z$	FPS		Z Velocity update	FPS
8. Sum of X accel SF-X	FPS	11.	Pitch rate	Rad/Sec
9. Sum of Y accel SF-Y	FPS	10	D	
10. Sum of Z accel SF-Z			Position (X)	Ft
10. Sum of Z accel Sr-Z 11. Pitch error	FPS		Position (Y)	Ft
	Deg		Position (Z)	Ft
12. Yaw error	Deg		Time to go to SECO	Sec
13. Roll error	Deg	22.	Radical Velocity	FPS
14. Time in mode	Sec			
15. Flow tag			Catch-up Mode	
ló. Multiplex frame (14 frames)	Diagnostic Check		T/M (D/T)	
17. MDU-DCS Multiplex Word 1	Diagnostic	1.	Catch-up Mode selection	0 or +8V
	Check	2.	Pitch gimbal	Rev
18. MDU-DCS Multiplex Word 2	Diagnostic	3.	Yaw gimbal	Rev
	Check	4.	Roll gimbal	Rev
1.4. MDU-DCS Multiplex Word 3	Diagnostic	5.	Sum of X accel	FPS
	Check	6.	Sum of Y accel	FPS
20. MDU-DCS Multiplex Word 4	Diagnostic	7.	Sum of Z accel	FPS
	Check	8.	Computed IVI (X)	FPS
21. MDU-DCS Multiplex Word 5	Diagnostic		Computed IVI (Y)	FPS
	Check	10.	Computed IVI (Z)	FPS
22. MDU-DCS Multiplex Word 6	Diagnostic	11.	Pitch command	Rad
	Check	12.	Yaw command	Rad
		13.	Logic time	Sec
			Time in mode	Sec
Ascent Mode		15.	Flow tag	
T/M (D/T)			Incremental velocity (X)	FPS
			Incremental velocity (Y)	FPS
1. Ascent selection			Incremental velocity (Z)	
2. Pitch gimbal			Time thrust of midpoint	Sec
3. Yaw gimbal	Rev		Radar Range	Ft
4. Roll gimbal	Rev		Sine radar elevation	Ft
5. Sum of X accel	FPS		Sine radar azimuth	Ft
6. Sum of Y accel	FPS			
7. Sum of Z accel	FPS			
				*

GEMINI OPERATIONS HANDBOOK	Flight Crew Support Division	Prepared by
S/C 7 Rev Orig.	Spacecraft Operations Branch	Checked by
Pg 25 Section 2.5.7	Date 10-29-65	Approved by
		NACA - Named Spacecraft Center

MSC Form 1097A (Dec 63)

NASA - Manned Spacecraft Center

Rendezvous Mode T/M (D/T)

1.	Rendezvous Mode selection	
2.	Pitch gimbal	Rev
3.	Yaw gimbal	Rev
4.		Rev
5.	Sum of X accel	FPS
6.	Sum of Y accel	FPS
7.	Sum of Z accel	FPS
8.	Computed IVI (X)	FPS
9.		FPS
10.	Computed IVI (Z)	FPS
11.	Pitch command	Rad
12.		Rad
13.		nau
14.		See
15.		Sec
16.		TIDO
		FPS
17.	Incremental velocity (Y)	FPS
	Incremental velocity (Z)	FPS
	Time of thrust midpoint	Sec
	Radar range	Ft
	Sine radar elevation	Ft
22.	Sine radar azimuth	Ft
	Reentry Mode	
	T/M (D/T)	
	Reentry selection	1. S.
	Pitch gimbal	Rev
	Yaw gimbal	Rev
4.	Roll gimbal	Rev
5.	Sum of X accel	FPS
6.	Sum of ¶ accel	FPS
1.	Sum of Z accel	FPS
8.	Distance to earth center	Ft
	S/C velocity	FPS
	Flight path angle	Rad
	Down range error	NM
	Cross range error	NM
	Commanded bank	Rad
	Time in mode	Sec
	Flow tag	
16.	Longitude	Rad
17.	Latitude	Rad
	S/C heading	Rad
	Density altitude	
	Heading to target	Rad
	Range to target	NM
	Predicted half lift range	NM
		aht C

"pproved by	Flight Crew Support Division Spacecraft Operations Branch Date 10-29-65	GEMINI OPERATIONS HANDBOOK S/C 7 Rev Orig. Section 2.5.7 Pg 26
MSC Form 1097B (Dec 63)	NASA -	Manned Spacecost Contact